AS REAL-WORLD AS ANY SYSTEM COULD BE

by

Skip Poehlman

Department of Computer Science and Systems

and

Bill Garland ^a

Department of Engineering Physics

McMaster University

Hamilton Ontario Canada L8S 4K1

AAAI90 WORKSHOP on KNOWLEDGE-BASED CONTROL SYSTEMS BOSTON, MASS. JULY29, 1990

OVERVIEW

CHARACTERISTIC	APPLICATION 1	APPLICATION 2
[A] DESCRIPTION	Reactor operator companion - open loop control aid	Accelerator controller - closed loop control
[B] TIME	Soft real-time requirements - degradation acceptable	Hard real-time requirements - "deadman" embedded process
[C] NON-PRECOMPUTED CONTROLLER	Program size/complexity - too many possible states - simulation modelling OK	Program size/complexity - too many possible states - uncertain behavioural states preclude modelling
[D] RUN-TIME STRUCTURE	Reasoning - continuous simulation model available when intelligently applied to plant process Learning - possible neural net applicatn	Planning - STARTUP/MAINTAIN/SHUTDOWN /DIAGNOSTIC modes Reasoning - appropriate mode selection and troubleshooting
[E] REDUCING RUN-TIME LATENCY	Functional abstraction - society of processors & time- dimensional blackboard	Temporal abstraction - embedded controllers & high level knowledge-based master
[F & G] ARCHITECTURE-precompute -run-time	Numeric processes Symbolic processes	Embedded processor modes of op Heuristics that mimic expert
INTERCOMMUNICATION-[H] top down	General directives	Setpoints/goals/reference vals Tolerance of parameter values Modes of operation
-[I] bottom up	Data postings	Success of compliance Noted non-nominal parm values
[G] PERFORMANCE	Too premature yet	System fragile (non-robust)

NUCLEAR REACTOR OPERATOR COMPANION

CHARACTERISTICS:

- OPEN LOOP (HUMAN OPERATOR INVOLVED) SYSTEM
- COMPLEX PLANT PROCESS CONTROL AID IN TIMES OF
 HUMAN OPERATOR INFORMATION OVERLOAD
- SOCIETY OF HETEROGENEOUS PROCESSING ENGINES
- INTELLIGENTLY APPLIES A REAL-TIME SIMULATION

 MODEL FOR PLANT PROCESS TRACKING

file:kbcsld2.msw 24 July, 1990 / 11:46 AM

ACCELERATOR CONTROL SYSTEM

CHARACTERISTICS:

- CLOSED LOOP (HUMAN OPERATOR NOT DIRECTLY INVOLVED SYSTEM CONTROL) SYSTEM
- MULTIPLE SLAVE EMBEDDED REAL-TIME
 PROCESSORS
- EXPERT SYSTEM-BASED MASTER CONTROL

file:kbcsld3.msw 24 July, 1990 / 11:47 AM

TIME CONSIDERATIONS

REACTOR OPERATOR COMPANION:

- DATA (TIME SERIES DATA) CONCURRENCY MUST BE
 MAINTAINED
- TIMELY INTERCOMMUNICATION POSSIBLE VIA TIMEDIMENSIONAL BLACKBOARD (MESSAGE DATABASE)
- SLOW RESPONSE OF SYSTEM MEANS NON-CATASTROPHIC
 DEGRADED PERFORMANCE

- REAL-TIME CONTROL SYSTEM, THEREFORE INFORMATION

 OVERRUN TO BE AVOIDED
- COMPUTER FAILURE AT INTELLIGENCE LEVEL WILL NOT LEAVE
 EMBEDDED PROCESSORS IN ACTIVE STATES (DEADMAN
 CONTROLLED)

CONTROLLER STRUCTURE -- PRECOMPUTABILITY

BOTH APPLICATIONS:

- PROCESS TOO COMPLEX FOR DECISION TREE ANALYSIS
- PROCESS TOO COMPLEX FOR LOOKUP TABLE / RESOURCE
 REQUIREMENTS / RESPONSE TIMES

REACTOR OPERATOR COMPANION:

- MODEL EXISTS BASED ON TRANSPORT EQUATIONS
- INTELLIGENT AGENT REQ'D TO APPLY SIMULATION TO

 TRACKING OF PLANT PROCESS IN REAL-TIME

- UNCERTAIN PARAMETRIC VALUES (I.E. REPRODUCIBILITY)
 PRECLUDE MODELLING TECHNIQUES
- HEURISTICS REQUIRED TO MIMIC EXPERT OPERATOR

CONTROLLER STRUCTURE -- RUNTIME

REACTOR OPERATOR COMPANION:

- REASONING -- EXPERT COMPARISON OF MODELLED VS. REAL

 DATA RESPONSE OF SYSTEM
- LEARNING -- NEURAL NETWORK APPLICATION EMPLOYING
 PATTERN RECOGNITION

- PLANNING -- APPROPRIATE INVOCATION OF STARTUP/
 MAINTAIN/SHUTDOWN/DIAGNOSE OPER'G MODES
- REASONING -- DIAGNOSTIC TROUBLESHOOTING DUTIES OF
 EXPERT SYSTEM MASTER

RUN-TIME LATENCY REDUCTION

REACTOR OPERATOR COMPANION:

- FUNCTIONAL ABSTRACTION -- A SOCIETY OF
 HETEROGENEOUS (SYMBOLIC/NUMERIC) PROCESSORS
 - -- ASYNCHRONOUS INTERCOMMUNICATION VIA A TIME-DIMENSIONAL BLACKBOARD

- TEMPORAL ABSTRACTION -- EMBEDDED SLAVE
 PROCESSORS CHARGED WITH REAL-TIME OPERATION WITH
 THE HIGHEST DATA SAMPLING RATES
 - -- SYMBOLIC PROCESSING MASTER CHARGED WITH ISSUING
 EXPERT CONTROL OVER PROCESS USING THE LOWEST
 TRANSFER RATE

CONTROLLER STRUCTURE -- DESIGN STRATEGY I

TOP-DOWN COMMUNICATION:

REACTOR OPERATOR COMPANION - SIMULATION

DIRECTIVES TO MAINTAIN MODEL / PROCESS TRACKING

(Eg. TWO PHASE FLOW MODE)

ACCELERATOR CONTROL SYSTEM - COMMANDS AND
DATA NECESSARY TO INVOKE OPERATIONAL MODES OF
EMBEDDED PROCESSORS (Eg. MAINTAIN MODE
REQUIRES PARAMETER TOLERANCE WINDOW VALUES)

file:kbcsld8a.msw 24 July, 1990 / 11:50 AM

CONTROLLER STRUCTURE -- DESIGN STRATEGY II

BOTTOM-UP COMMUNICATION:

REACTOR OPERATOR COMPANION - DATA POSTING

(EG. SIMULATION RESULTS, DATA ACQUISITION SAMPLING

RESULTS)

ACCELERATOR CONTROL SYSTEM - DETAILS OF DEGREE OF COMPLIANCE

- NOTED NON-NOMINAL VALUES OF KEY PARAMETERS

file:kbcsld8b.msw 24 July, 1990 / 11:50 AM

CONCLUSIONS

PERFORMANCE:

- TOO PREMATURE FOR REACTOR COMPANION
- ACCELERATOR OPERATES WITH A SMALLER THAN EXPECTED

 DYNAMIC RANGE BUT WITH PERFORMANCE THAT EXCEED

 EXPERTS; THUS IS FRAGILE AND NOT YET ROBUST ENOUGH

 FOR EVEN EXPERIMENTAL DEPLOYMENT IN THE FIELD

FUTURE WORK:

- IMPLEMENTATION OF REACTOR SUBSYSTEMS INCLUDING
 BLACKBOARD AND TREND ANALYZERS
- INVESTIGATION OF THE ROLE THAT INTELLIGENT SELFREFLECTION CAN PLAY IN GLOBAL COMPANION OPERATION
- EXTENSION OF KNOWLEDGE BASES TO REMOVE FAGILITY OF ACCELERATOR CONTROL SYSTEM
- BOTH SYSTEMS TO INCLUDE CRASH RECOVERY PROCEDURES