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Chapter 2 Probability Toolsand Techniques

2.1 Introduction
211 Chapter Content

This chapter presents basic probability tools and techniques, drawing heavily from McCormick [MCC81]
for the basic probability theory (up to Section 2.9). Alan Monier guided the bulk of the remainder.

2.1.2 Learning Outcomes
The objective of this chapter is to provide the basic probability tools and techniques needed to explore

reactor safety analysis. Thiswill alow the quantification of the concepts and designs developed in the rest
of the course. The overal learning outcomes for this chapter are as follows:

Objective 2.1 | The student should be able to identify the terms and symbols used in probability

calculations.
Condition Closed book written examination.
Standard 100% on key terms and symbols.
Related
concept(s)

Classification | Knowledge | Comprehension | Application | Analyss | Synthesis | Evaluation

Weight a a

Objective 2.2 | The student should be able to recall typical values and units of parameters.

Condition Closed book written or oral examination.
Standard 100% on key terms and symbols.
Related

concept(s)

Classification | Knowledge | Comprehension | Application | Analyss | Synthesis | Evaluation

Weight a
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Objective 2.3 | The student should be able to analyse simple systems and compute unavailabilities.
Condition Open book written examination.

Standard 75%.

Related

concept(s)

Classification | Knowledge | Comprehension | Application | Analyss | Synthesis | Evaluation
Weight a a a a

2.1.3 The Chapter Layout

First, the general rules of probability (AND and OR rules) and Bayes Equation are introduced but, for the
most part in this course, we will rely on the approximations of rare and independent events. Time
dependent systems are addressed, covering failure rates, repair, continuous operation, and demand systems.

We encounter a smple shutdown system, illustrating the concept of testing to increase system availability.
We also consider the basic '2 out of 3' system so prevalent in reactor safety systems. By way of contrast to
the shutdown system, which is a demand type system, the emergency core cooling system is also examined
as an example of a demand system with amission time.
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2.2 Definitions and Rules

If event A occurs x times out of n repeated experiments then:
P(A)=probability of event A

-lim__(%)
n
(Axiom #1) 0 < PA) <1

(Axiom #2): P(A)+P(K) -1 where A means "not A".

The intersection of 2 events, A; and A,, is denoted:
A NA, o A/A, or A AND A,
(This is not A, times A,)

The conditional praobability P (A; | A,) meansthe probability of A, given that A, has occurred.

The product rule for probabilities states:
P(A; A) = P(AJA) P(A)

P(A,IA) P(A)

For example, if A, isthe probability that part 1 fails and A, is the probability that part 2 fails then
P(A,; A2) = probability that both 1 and 2 fail
= probability that 2 failsand ( part 1 fails given that part 2 fails).
If the failures are independent,
RAZ| A} =P(Ay).
This can be extended to give:
P(AA,...A) = P(A)PA,JA)...PAA A A,... Ay )

(Axiom#3)

If events are independent:
P(AA,...A) = P(A)P(A,)...P(A,)

The union of two events is denoted:
A UA, o A+A, o A ORA,

We have:
P(A,+A,) = P(A) + P(A,) - P(AA)
In generd:
N N-1 N
PA+A,+..+Ay) = Y. PAY - Y Y PAA)
n=1 n=1 m=n+1

I+

AEDVIPALA,LA))
If events are independent:

D

2
3)

(4)

()

(6)

(7)

(8)

(9)

(10)
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N
1 - PA A+ A =[] [1-PAY] 1)
n=1
Rare events approximation (and independent)
N
PA,+A+ ... A) = P(A
( 1 A2 N) nZ:l ( N) (12)
and we previously had (equation 7):
P(AA,...A) = P(A)P(A,)....P(A,) (13)
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2.3 TheBayesEquation
Given an event or hypothesis, B, and A, mutually exclusive events or hypotheses (n=1, 2....N):
P(A.B) = P(A) P(BIA) = P(B)P(A,[B) (14)
P(BIA,)
~ P(A |B) = P(A n 15
(AB) = P(A) PE) (15
Now, since the events, A, are mutually exclusive:
N
P(AB) =1 (16)
n=1
Multiplying by P(B):
N
P(B) - }_ P(B) P(AB)
n=1
N
- > P(AB) (17)
n=1
N
= ) _P(A) PBIA)
n=1
Substituting 17 into 15:
P(A) P(B
a ) - A PBAY
(18)

N
Zjl P(A,) P(BIA,)

So if we know P(BJA,) then we can calculate P(A,, [B). Thisis an important result because it enables you
to "reverse’ the order of information. Thisis especialy useful for analyzing rare events.
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24 Example- Core Monitoring System

A Core Monitoring System (CMS) is
composed of the 3 sensors as shown:

We know from the manufacturer the failure

probabilities over the period of time under lon Chamber (C)
congideration (thisis the axiomatic data):
P(IC) = 0.02 Reactor
P(TS) =004 Tempereature Sensor (TS)
P(PS) = 0.01 /
Pressure Sensor (PS)

Testing of the installed system shows that
P(CMSJIC) = 0.10 (i.e., when IC fails, the
CMSfails 10% of the time.

Also P(CMI[TS) =0.15 Figure2.1 Core Monitoring System
P(CMSJPS) = 0.10

What is the chance that afailed CMSis caused by afailed TS?

Solution:
P(TSICMS)- P(TS) P(CMSITS)
P(IC) P(CMSJIC) +P(TS) P(CMSTS) + P(PS) P(CM|TS)
_ 0.04x0.015 (29
0.02 x 0.10 + 0.04 x 0.15 + 0.01 x 0.10
= 0.667
Comment:

Based on the axiomatic data P(IC), P(TS) & P{PS) one would expect the TS to be a problem in
proportion to its failure rate relative to the other devicesi.e,

0.04 4 20
0.02+0.04+0.01 7 (20)

So, in the above example, the testing data, P(B)|A,) is used to modify the axiomatic data to yield arevised
relative frequency of sensor failure, given a system failure, by P(A,|B). Thisis called a posterior
probability.
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2.5 Failurerate estimation when no failures have occurred
We can use Bayes Equation to glean information from non-events as well.

Consider the case where 4000 fuel shipments have been made with no radioactive release. Can we
determine the probability of release per shipment?

Let B = 4000 shipments with no release
A, = release prob. = 10°
A, = release prob. = 10"

Table 2.1 Bayesian calculations for the example [Source:
MCC81, page 19]

A; = release prob. = 108

If A, were true, then:
P(BJA,) = (1-103)%% = 0.0183 1 2 3 4 5 6
since we can assume shipments are

. v A, 1072 104 10 10°% 107 10-*
independent, the probability of a P(BA,)  0.0183 06703  0.9608  0.9960  0.999  0.99996
single successis 1-10°3, Uniform prior
and P(BJA,) isjust the intersection of P(A,)  0.1667  0.1667  0.1667  0.1667  0.1667  0.1667
AJB)  0.004  0.1443 02068  0.2144  0.2152  0.2153
4000 events. Pt (B)
Nonuniform prior®
o _ _ P4, 0.01 0.2 0.4 0.3 0.08 0.01
Likewise we find (as shown in table P(A.B)  0.0002  0.1475  0.4228 03287  0.0880  0.0110
2.1):
2 From S. Kaplan and B. J. Garrick, On the use of a Bayesian reasoning in safety and
P(B|A,) = 0.6703 reliability decisions—three examples, Nucl. Technol. 44, 231 (1979).
P(B|A3) = 0.9608 |

If we know P(A,),...P(Ag) we could calculate P(A,|B) or the probability of our statement A, being actually
true. If we assume P(A,) = UN = 1/6, we find that P(A,|B) = 0.04, ie, it isnot too likely. If we use amore
likely P(A,) we see that P(A,|B) is adjusted downwards and we conclude that the failure rate is significantly
less than 10°3.

2.6  Probability Distributions

X
P(X) = f p(x)dx
- cumulative probability 1)
= P(x < X)
where p(x) = probability density function.

There are two types of systems:
1) Those that operate on demand (ie, safety systems)
2) Those that operate continuoudly (ie, process systems)
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2.7 Demand Systems

We define:
D,, =n™ demand
P(D,) = probability of success on demand n
P(D,) = probability of failure on demand n
W, = system works for each demand up to and including demand n.

P(W,,) = P(D, D, D,; ... D, ,) (22)
PD, W, ) = PO W_,) PW_) (23)
% — —
P(D,D,D,..D, , D) = P(D_nlwn—l) P(W, _,) 24
= P (D,D,D,.D,,) .P(D,,DD,.D, ,)..PD,D, PD,)
If al demands are alike and independent, this _reduc& tg: B
P(D,D,...D, ,D,) = P(D) [1-P(D)]"? (25)

Data for demand failure is often published using the symbol Q.

Example:
P(IS) for aswitch is 10“. What is the probability that the switch fails at the end of 3 years when the
switch is used 20 times per week?

Solution:
Number of demands = 20x52x3 = 3120.

- P(DypogWappg) = 107 (1-1074)319

0.732 x 1074, (26)

3119)

Thisisthe same as any single specified failure, say on demand 25 or 87.
If the switch were repaired immediately upon any failure, then the probability that it would fail once at

anytime within the 3 yearsis just 3120 times the probability that it would fail at any specified demand, i.e.,
3120 x 0.732 x 10* = 0.228.
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2.8 Failure Dynamics

Failures are not static events. Let's look at failure dynamics.
f(t)dt = probability of failure in the interval dt at time t

F(t) = accumulated failure probability
¢ (27)
= f f(t/)dt’
0
Assuming that the device eventudlly fails the reliability, R(t) is defined as
R(t) = 1 - F(t)
0 t
:ff(tﬁdt/ fff(tﬁdt/
0 0 (28)
= f f(t/)dt’
t
0,
_dR(t) _ dF(Y)
fit) = - —=% = —=
(t) ot o (29)
If A(t) dt = prob. of failure at timet given successful operation up to timet (defined as the conditional
failure rate), then:
f(tydt = A(t) dt R(t)
or f(t) = A(t) R(Y)
R (30)
dt
drR
— = -A(t) R(t
n (t) R() (31)
drR
— = - At) dt
= (t) (32)
"0 aR
= fk(t)dt = In R(t) - In R(0) (33)
R(0)
Since R(0) = 1,
t
R(t) = expg - f A(t)dt (34
0
If A isconstant, (ie, random failures):
R(t) = e ™. (35)
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Given A(t), we can determine everything else. Seetable 2.2 for a summary of commonly used terms and
relationships. See figure 2.2 for typical Avst.

Table 2.2 A summary of equations relating A(t), R(t), F(t), and f(t)

- _ First _ Second _ Third
Word description Symbol = relationship ~  relationship relationship
Hazard rate A1) —(1/R) dR/dr  f(O/(1 = F@))  FO)/R(1)
&« {
Reliability R ft fir) dr | - F(o) exp | - fo Ar) dr)
t t
Comulative filure ~ F() | 'f) dr | - R t—exp [~ | Mndr]
probability 0 0
Failure probability fi) dF(t)/dt —dR(1)/dt AMOR(D
density

Mean timeto faillure (MTTF)

f t f(t)dt
MTTF = 2 = ft f(t)dt
ff(t)dt 0
0 (36)
= f t A e dt (assuming A = random)
0
_ 1
A
Availability, A(t)
If adevice undergoes repair then R(t) - A(t)
Rt < A®t) < 1. (37)

A(t) = R(t) for devicesthat are not repaired.
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Typical mechanical

equipment \

A ()
Typical
electrical
equipment

1 Random failure
rate

1

time
Burn-in or Wear-out

debugging Useful life period period
period

Figure 2.2 Time dependence of conditional failure (hazard)rate [Source: MCC81, page 26]

wjg DATEACH\Thai-rs1\Chap2.wp8 September 5, 1998 14:58



Probability Tools and Techniques 2-12

2.9 Continuous operation with Repair
Assume random failures. Thisimplies

A = constant

R(t) = e*' = reliability, illustrated in figure 2.3.

Failure probability = F(t) =1 - R(t)
=1 -e", illustrated in figure 2.4.

Let repair occur at timeinterval, t. Then F(t) is a sawtooth asillustrated in figure 2.5.

If T << Athen
2¢2
F-1 - (@ - at + 25 )
2 (38)
=~ M for t <t inany interva
and t is measured the time of lastrepair.
AT
W<FP> ==
5 (39)
Thisisauseful rule of thumb but you can always calculate accurately from:
T e—)ht‘i-
fF(t)dt t] + 0
<F> - 0 _ 0 A
T T
0
_AT + e -1
AT '

A common design task isto design a system (composed of components that have a known failure rate) to

meet some target unavailability A (A_ = F) . Given adesign, therepair interva isthe remaining

variable. A frequent repair cycle (low t) givesalow A, but such frequent repair may be untenable due

to excessive cost on downtime or even hazard to repair personnel. 1n such a situation, alternative designs
would have to be considered.

Often, repair may not be required in order to return Fto 0. it may be sufficient to simply test the
components to ensure that they are available. Thisisusualy the case for "demand” systems.
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time time

, - , Figure 2.4 Failure probability vs. Time
Figure 2.3 Reliability vs. Time

time

Figure 2.5 Failure probability with repair
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2.10 Example - Shutdown System

Consider the case of a single shutoff rod (SOR) for areactor. Given afailure rate based on previous
experience of A = 0.002/year and a required unavailability of <103, what is the required test period, t?
~ AT

A= - 0001s (41)
Tomeetthe A target of 10°,
1073
< —— =1yea 42
0.001/year Y 2

Thisis certainly areasonable test period. But if the A target were 10° or if the failure rate were 2 /

year, then the required test period would be 107 years or about 3 times per day! This would not be
reasonable.

A moreredlistic shutdown system would have a bank of, say, 6 SORs, asillustrated in figure 2.5.

o O
o O
o O

Figure 2.6 Smple SDS
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When the shutdown system (SDY) is activated some, all or none of the rods drop into the core. The
possible events are enumerated in table 2.3.

Assuming that the rods fail independently and that the failure ~ Table 2.3 SDS event possibilities
rateis A, then the probability of agiven rod failing on average

IS. Event #rods # rodsfall
<F> = L; (= p for conciseness) (43) drop to drop

EO 6 0

as before. And the success probability is 1-p. In general the E1 5 1

probability for event E,, k=1, 2... nis

N! -
P(E ) = 1- N-kgpy k E2 4 2
(E) N 1-p)"p (44)

E3 3 3

The factor N NI!< ) k! gives the number of possible ways for E4 2 4

that event to happen, the factor (1-p is the probability

that N-k rods all successfully drop and the factor p* isthe E6 0 6

probability that k all fail to drop.

Thus;

P(E,) = (1-p)°
P(E,) = 6(1-p)°p
P(E,) = 15 (1-p)'p°
P(Es) = 20 (1-p)°p°
P(E,) = 151-p)’p*
P(Es) = 6(1-p)p°
P(Es) = p°

Since these are the only possibilities, they sum to unity, i,e:

N
g PE) =1 (46)

Normally, there are more SOR's than necessary for reactor shutdown and it is sufficient to require that,
say, 4 of the 6 rods must drop. If thiswere the design criteria, then events E,, E, and E, represent the
successful deployment of the SDS. Events E; ~ E; represent system failures.

The system unavailability for a4 out of 6 criterion is thus:
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A

N 2
gP(Ek) =1 - gP(Ek)
1 - (1-p)® - 6(1-p)°p - 15(1-p)*p? (47)

where p = %

Givenal and an assumed 1, the A iscalculated and compared to the required unavailability.

The t isthen adjusted until the A target (say 103) ismet. For a of, say 0.02/year, wefind that A is

2 x10° for at of 1year. Thustesting every year is more than enough for this design to meet the
unavailability target.

The above assumes that, when testing occurs, any deficiencies are immediately and instantaneoudly
repaired so that the "clock" is effectively reset and the failure probability is reset to zero. However, repairs
cannot usually be made right away. The plant will have to operate with less than 6 SORs available and the
unavailability target must still be met.

For instance, assume that the operator finds that one rod fails the test and has to be declared "out of
service'. The above calculation needs to be repeated based on a4 out of 5 criterion rather than a4 out of
6.

Thus;

T CR e
! 510! -p) 411! (-pp

1- (1-p)° - 5(1-p)* p

A, (to denote unavailability with 1 rod out of service)

|

(48)

At of 1year gives A, =0.00098, whichjust meststhe A target of 10°.

1

We continue in this way by also considering the case where 2 rods fail their test and are taken out of
service. Now the SDS must operate on a4 out of 4 basis. All remaining rods must drop. In this case the
unavailability is

A,=1-(1-p)*

For t = 1 year, wefind 52 = 0.039 and the operator must step up the testing program dramatically (t =

0.02 years or once every week) to achieve A =103 or better.
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To summarize:

Table 2.4 SDS summary
. ________________________________________________________________________________________________________________________________|
Case A ) T Operator Action
(per year)
Orodsfail test |2x10° |1 None
1rod fail test 0.00098 |1 Repair rod
2rodsfail test | .0008 .02 Repair rods
Test every week until rods are repaired
3ormorerods |1 Shutdown since need at |east 4 rods available

fail test
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2.11 Fault Tree Example

A more systematic way to carry out the same analysis as per the previous section isto develop afault tree.
We start by identifying the end result (SDSL fails to deploy) and itemize al the ways that this can happen.
In thiscase, SDS1 can fail in any one of its 7 modes:

Event E, 0 rods out of service

Event E, 1 rods out of service

Event E, 2 rods out of service

Event E; 3 rods out of service

Event E, 4 rods out of service These modes are automatic failures since at
Event E; 5 rods out of service least 4 rods are required.

Event Eg 6 rods out of service

All these modes are mutually exclusive so we OR
their probabilities of failures. The fault treeis shown in figure 2.6. We expand each option until we can
no longer decompose the event or we arrive at a point where we know the probability of failure.

For the case of 0 rods out of service, the probability of being in that mode is (1-p)® as before. Within that
mode, failure occurs if ether:

6 rods fail to drop [probability of this failure mode = pf]

5 rods fail to drop [probability of this failure mode = 6 (1-p) p’]

4 rods fail to drop [probability of this failure mode = 15 (1-p)?p‘]

3rods fail to drop.[probability of this failure mode = 20 (1-p)*p?]
These events are mutually exclusive. Thusthat portion of the treeis expanded as shown. The
unavailability of SDS1 while in the E, modeis smply:

A, =Y failure modes when 0 rods are out of service

p® + 6(1-p)p° + 15(1-p)*p* + 20(1-p)°p? (49)

where p = }‘—ZT

0

The contribution to unavailability of the system for this segment of the fault treeis:
A (no rods out of service) = (1-p)® A, (50)

The other modes can be expanded in like fashion to give:
A, = Y failure modes when 1 rod is out of service

51
= p° + 5(1-pp* + 10(1-py’p® + 10(1-p)°p? Y
KZ = Y failure modes when 2 rods are out of service (52)
= p* + 41-pp° + 2(1-py’p? + 4(1-p)°p
Finaly, the total system Enavailability_is: B B
A = (1-p)° Ay + 6(1-p)°p Ay + 15(1-p)'p? A, (53)

Note that the system unavailability does not include the unavailability for modes 3 through 6 since these are
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modes where the unavailability if known. In those cases, the plant would be shut down and put in afail
safe mode by other means. Thus, these modes do not contribute to operating unavailability.

Also note that, in contrast to the example developed in the previous section, the aboveis based on a
common t. In the previous example T was varied within each mode to meet the target unavailability so
that:

A=A=A =A,=A (54

target
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SDS1 fails
to deploy
[+
SDS1 fails SDS1 fails SDS1 fails SDS1 fails SDS1 fails SDS1 fails SDS1 fails
in EO mode in E1 mode in E2 mode in E3 mode in E4 mode in E5 mode in E6 mode
failure probability = 1
l + l l + l l + l = once in these modes =
|
|
6 rods 5 rods 4 rods 3 rods 4 rods 3 rods 2 rods 1rods
fail to fail to fail to fail to fail to fail to fail to fail to
drop drop drop drop drop drop drop
5 rods 4 rods 3 rods 2 rods
fail to fail to fail to fail to
drop drop drop drop

Figure 2.7 SDSI1 fault tree
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212 2/3Logic Example

Figure 2.8 illustrates a relay setup that operates on a 2
out of 3logic, or 2/3 logic. There are 3 physical relays,
D, E and F but each relay has two sets of terminal pairs, = |
allowing them to be connected as shown. Therelaysare "‘|_

normally open but close when asignal (D, E or F) from

their respective channels are received. If any two

channels are activated, then the circuit is completed and

current can flow between top and bottom. If the sub- E}g% F}g% D}é‘c\:
circuit isin a safety system circuit, the safety systemiis
activated when two or more of channels D, E and F are
TRUE. If the probability of failure of any relay isp,
what isthe overall unavailability of the sub-circuit?

ES- RS-

Figure 2.8 '2 out of 3 Logic - Relay example
This situation is, in fact, completely similar to the SOR
case previously examined. Here successis defined as 2
out of 3 events occurring. The unit failsif 3relaysfail or if 2 relaysfail. All other states constitute a
working sub-system. Thisis summarized in table 2.4. All the states are mutually exclusive. The
unavailability, then of the unit is smply the sum of the failure probabilities:

~ 3! 3!
A= =P o= p? (1op) _
30! 2t 1 (55)  Table 2.5 Possible sub-system states and probabilities
- p3 + 3 p2 (1,p) _________________________________________________________________________|
In general, for aM out of N system: Condition of relays Condition of Probability
kN DEF sub-system
AT & tgma P =0k
k(N (56) 0= FAILED)
-1 - 3 N! 1- )N—kpk
= (N-K)IK! (- 000 0 p’
001 0 p? (1-p)
010 0 p? (1-p)
011 1 p (1-p)’
100 0 p? (1-p)
101 1 p (1-p)®
110 1 p (1-p)®
111 1 p (1-p)®
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2.13 Ladder Logic

Consider now the system shown in Figure 2.9(a) where therelays D, E and F have two sets of terminals
just like the previous example. In the standby or ready state, the relays are energized closed, providing a
current path from top to bottom. When the system "fires", ie, when signals are received a the relays, the
current path is broken if at least 2 relays change state (go from closed to open). Failure of a component (a
relay in this case) occurs when it fails to change state as requested. The failure modes are the same as for
the previous example and are given in table 2.5. We conclude that the system depicted by figure 2.9 is
entirely equivaent to that of figure 2.8.

Since safety systems are generally wired so that a

power failure will invoke the safety system, the ready
state has the relays powered closed and the relays open D 5= F D -5 EF
a

51

when power islost. The relays are designed to fail

open, thereby tending to fire the safety system if the

safety system logic or components fail. The MNR E &
safety trip signals, for instance, are all wired in series

and any one signal breaks the current to the magnetic F -7 5 E F E
clutches holding up the shutoff rods.

&l
|w)]
m

In actual systems, the relays of the ladder shown in

figure 2.9 do not have dua terminals. Rather, separate @ ®
rzella(;ys e used, depicted asDL, D2, ec. infigure Figure 2.9 '2 out of 3' Ladder Logic

Failure of the system due to relay failures now occurs when all 3 ladder stepsfail, ie, when step 1 fails
AND step 2 fails AND step 3 fails. The system will succeed if any step succeeds in breaking the circuit
(assuming signals a al 3 channels D, E and F).

Step 1 failsif either D1 or F2 fails to switch state upon demand (from closed to open). The fault treeis

shown in figure 2.10. The system

unavailability is thus:

A = (D1+F2).(E1+D2).(F1+E2)
= (2p)° - 8p?

if all relaysfail with probability p. Since D150 -5 F2 D15

p<<1, the unavailability of thiscircuit with 6

relaysis significantly lower than the previous E1-5 o2 T ELE
example which uses 3 relays.

F1o 5 E2 F1o
Well seein Chapter 5 how we can combine = - =
the relay fault tree with the SOR fault tree to

give the full fault tree for a shutdown system.

(57)

Ladder
F2 first step

Ladder
D2 second step

Ladder
E2 third step

(@) (8)
Figure 2.10 '2 out of 3' Ladder Logic - Separate Relays
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Failure to de-energize
ladder network

TOP EVENT

()

Failure to de-energize Failure to de-energize Failure to de-energize
ladder first step ladder second step ladder third step

a a

[

Relay
D1 fails to
open

Relay
F2 fails to
open

Relay
F1 fails to
open

Relay
E1l fails to
open

Relay
D2 fails to
open

Figure2.11 Fault Treefor the Ladder Logic Relays

Relay
E2 fails to
open
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2.14 Unavailability Targets

The unavailability of a system at any given timeis, in general, afunction of the system configuration.
Valves, switches, etc., fail from timeto time. System configuration is a function of time. Hence,
unavailability is afunction of time, asillustrated in figure 2.7. Safety targets can be defined in terms of
some average unavailability or in terms of an instantaneous unavailability. In the later case, the operating
station would need to continuously monitor the plant statusin order to continuoudly calculate the station
"risk" level. Thisislikened to having a"risk meter" for the station. Station personnel would respond to
equipment failures that lead to arise in station risk by fixing equipment, maintaining egquipment or invoking
standby or aternate systems. Working to an average unavailability, on the other hand, does not require
such avigilance; instantaneous risk can be permitted to rise in the short term as long as the averages are
achieved. Thisis more workable but less precise in maintaining control of station risk.

<A> in the time interval

>|

time
d:\teach\ep7xx\a_aver.flo

Figure 2.12 Time dependent unavailability
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2.15 Dormant vsactive systems

So far we have focussed on systems that are normally dormant and are required to operate on demand.
Safety systems generally fall into this category. However, some systems, like the Emergency Core Cooling
System (ECCS), are required to activate on demand and to continue to function for some defined mission
time. The normal response of the ECC to a Heat Transport System (HTS) break (termed a Loss of
Coolant Accident or LOCA) isfor the ECC to detect the event and initiate the injection of high pressure
(HP) cooling water. Then , after the HTS have depressurized, medium pressure and finally low pressure
water isinjected. The HP water is supplied via awater supplied that is pressurized by gas cylinders.
Medium pressure cooling water is supplied from the dousing water via ECC pumps and low pressure water
isretrieved from the sumps. For CANDU reactors a 3 month mission time has been set. The ECCSis
consequently divided into two separate fault trees for the purposes of analysis. Dormant ECC and Long
Term ECC (designated DECC and L TECC respectively). The DECC fault tree focusses on failure to
detect the LOCA event, failure to initiate high pressure (HP) cooling water, failure to distribute the flow,
and failure to provide medium and low pressure water. The LTECC fault tree focusses on the failure to
provide long term low pressure cooling due to pump failure, valve failure, flow blockage and loss of
coolant supply. ECC isdiscussed in more detail in Chapter 7.

Before we get into the specifics of applications, we develop safety criteria and design basis accidents in the
next two chapters.

2.16 Exercises

1 For the example fault tree of Section 2.11, calculate KO from the success modes. Which way is
better
a in the 4/6 case
b. in the 26/28 case?

2. A horn on a car operates on demand 99.96% of thetime. Consider each event independent from all

others. How many times would you expect to be able to honk the horn with a 50% probability of
not having asingle failure?

3. A light bulb hasa A(t) = 5x107" t, where tisthetimein days.

a What isthe MTTF for the bulb?
b. What isthe MTTF if A(t) = 5x107 t?
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