UN 0802

Reactor Physics

 

Tentative Dates:         November 12 - December 17, 2005

 

Instructors:                Eleodor Nichita (UOIT)

                                    Phone: (905)721-3111 ext. 2968

                                    e-mail: eleodor.nichita@uoit.ca

                                    Ben Rouben (AECL)

                                    Phone: (905)823-9060 ext. 4550

                                    e-mail: roubenb@aecl.ca

 

 

Study materials:

 

Course notes

 

Textbook:                    Introduction to Nuclear Engineering (third edition)

                                    J.R. Lamarsh & A.J.Baratta

                                    Prentice-Hall, 2001

                                    ISBN: 0-201-82498-1

 

Additional reading:      Nuclear Reactor Analysis

James J. Duderstadt & Louis J. Hamilton

ISBN: 0471223638

 

Prerequisite Topics in Mathematics

·         Vector algebra

·         Differential operators (gradient, divergence, curl, Laplacian)

·         First and second order differential equations with constant coefficients

·         Partial differential equations with constant coefficients

·         Systems of linear algebraic equations

 

 

Assignments:              Assignments will consist on homework problems and projects.

                                    Assignments make up 30% of the final grade. 

 

 

 

Grading:      

 

Assignments:     30%

                                    Midterm exam:  35%

                                    Final exam:        35%

 

                                    Grading scale:  0-100%. 

 

 

Exam Tentative Dates:           Midterm:        November 26

            Final:              December 17

 

 

Learning objective

 

To provide students with primary knowledge on the following topics:

  • nuclear structure
  • radioactivity
  • interaction of radiation with matter
  • nuclear reactions
  • nuclear fission as used for power production
  • basic quantities and methods used to describe the behaviour of neutrons in a nuclear reactor.
  • static and time-dependent diffusion equation
  • elements of CANDU-reactor design
  • basic codes used for nuclear reactor neutronic design

 

Learning outcomes

 

After taking the course, students should be able to:

 

  • Understand the structure of the atom and the main components of the nucleus.
  • Find isotopes on the Table of Nuclei, and identify the nature of radioactive decay (if any) of a given isotope.
  • Describe the main differences between alpha, beta and gamma decay
  • Understand the concept of binding energy and how nuclei of different binding energies may undergo fission or fusion. 
  • Compute the energy released in fission or fusion reactions.
  • Describe the way different types of radiation interact with matter.
  • Understand the concept of chain reaction and each component of the four(six)-factor formula.
  • Formulate the neutron diffusion equation.
  • Describe and use methods of solution for the static diffusion equation.
  • Describe and use methods of solution for the time-dependent diffusion equation
  • Describe fission-product poisoning (Xe, Sm)
  • Describe reactivity effects of temperature and void
  • Describe the components of a CANDU reactor
  • Utilize simple codes employed in reactor neutronic design.

 

Academic misconduct

 

Academic misconduct includes, but is not limited to:

 

Cheating on examinations, assignments, reports, or other work used to evaluate student performance. Cheating includes copying from another student’s work or allowing one’s own work to be copied, submitting another person’s work as one’s own, fabrication of data, consultation with an unauthorized person during an examination, or use of unauthorized aids.

 

 

 

Tentative Course Outline

 

1.      Introduction

 

2.      Atomic And Nuclear Physics

2.1.          Photoelectric Effect

2.2.          Compton Effect

2.3.          Atomic Spectra

2.4.          Bohr’s Atomic Model

2.5.          De Broglie Waves

2.6.          Elements of Relativity

2.7.          Relativistic Mass Formula

2.8.          Relativistic Energy

2.9.          Relativistic Momentum

2.10.      Nuclear Constituents

2.11.      Notations of Isotopes

2.12.      Descriptions of Nuclear Particles (Mass, Charge, Spin)

2.13.      Binding Energy

2.14.      The Liquid Drop Nuclear Model

2.15.      The Decay Process

2.16.      Natural Radioactivity

2.17.      Induced Radioactivity

2.18.      Radioactive Families

 

3.      Interaction of Radiation With Matter

3.1.          Interactions of Heavy Charged Particles

3.2.          Interactions of Light Charged Particles

3.3.          Interactions of Gamma Radiation

3.4.          Interactions of Neutrons

3.5.          Types of Nuclear Reactions

3.6.          Kinematics of Nuclear Reactions

3.7.          Reaction Cross Sections

3.8.          Attenuation and Shielding

 

4.      Nuclear Reactors and Nuclear Power

4.1.          The Fission Chain Reaction

4.2.          Nuclear Reactor Fuel

4.3.          Nuclear Plant Components

 

5.      Basic Concepts of Neutron Physics

5.1.          Fission

5.2.          Flux, Current, Source

5.3.          Reaction Rate Densities

5.4.          Fick's Law and the Diffusion Equation

5.5.          Solutions to the Diffusion Equation

5.6.          The Group Diffusion Model

5.7.          Two-Energy-Group Neutron Moderation

 

6.      Nuclear Reactor Theory

6.1.          Fundamental Neutronic Problems (Fixed-Source and Eigenvalue)

6.2.          Criticality

6.3.          Homogeneous Reactors - Flux Separability In Energy And Space

6.4.          One-Group Reactor Equation

6.5.          One-Group Flux Solution for Different-Shape Homogeneous Reactors (Slab, Parallelepiped, Cylinder, Sphere)

6.6.          Multiregion Problems - Reflector

 

7.      Nuclear Reactor Kinetics/Dynamics

7.1.          Classification of Time-Dependent Problems.

7.2.          Reactor Kinetics

7.3.          Reactivity Devices

7.4.          Temperature Effects On Reactivity

 

8.      Discussion of Basic CANDU Design

 

9.      Discussion of CANDU Computational Schemes

 

10.  Discussion of CANDU LOCA Calculations

 

11.  Hands-on Calculations with POWDERPUFS-V Lattice Computer Code, In-Class And Home Exercises

 

12.  Xe-I Kinetics, Calculations and Exercises