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Course notes 
 
Textbook:    Introduction to Nuclear Engineering (third edition) 
   J.R. Lamarsh & A.J.Baratta 
   Prentice-Hall, 2001 
   ISBN: 0-201-82498-1 

 
Additional reading:  Nuclear Reactor Analysis 

James J. Duderstadt & Louis J. Hamilton 
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Prerequisite Topics in Mathematics 

• Vector algebra 
• Differential operators (gradient, divergence, curl, Laplacian) 
• First and second order differential equations with constant coefficients 
• Partial differential equations with constant coefficients  
• Systems of linear algebraic equations 

 
Assignments:  Assignments will consist on homework problems and projects. 
 Assignments make up 30% of the final grade.   
 
Grading:       

Assignments: 30% 
   Midterm exam: 35% 
   Final exam: 35% 

 
   Grading scale:  0-100%.   

 
Schedule:  Nov 12 - lecture 
   Nov 13 - lecture 
   Nov.19 - lecture 
   Nov 20 - lecture 
   Nov 26 & 27 - weekend off 
   Dec  3 - Midterm + lecture 
   Dec  4 - lecture 
   Dec 10 - lecture 
   Dec 11 - lecture 
   Dec 17 - Final 



Learning objective 
 
To provide students with primary knowledge on the following topics: 

• nuclear structure 
• radioactivity 
• interaction of radiation with matter 
• nuclear reactions  
• nuclear fission as used for power production 
• basic quantities and methods used to describe the behaviour of neutrons in a nuclear reactor. 
• static and time-dependent diffusion equation 
• elements of CANDU-reactor design 
• basic codes used for nuclear reactor neutronic design 

 
Learning outcomes 
 
After taking the course, students should be able to: 
 

• Understand the structure of the atom and the main components of the nucleus. 
• Find isotopes on the Table of Nuclei, and identify the nature of radioactive decay (if any) of a given 

isotope. 
• Describe the main differences between alpha, beta and gamma decay 
• Understand the concept of binding energy and how nuclei of different binding energies may undergo 

fission or fusion.   
• Compute the energy released in fission or fusion reactions. 
• Describe the way different types of radiation interact with matter. 
• Understand the concept of chain reaction and each component of the four(six)-factor formula. 
• Formulate the neutron diffusion equation. 
• Describe and use methods of solution for the static diffusion equation. 
• Describe and use methods of solution for the time-dependent diffusion equation 
• Describe fission-product poisoning (Xe, Sm) 
• Describe reactivity effects of temperature and void 
• Describe the components of a CANDU reactor 
• Utilize simple codes employed in reactor neutronic design. 

 
Academic misconduct 
 
Academic misconduct includes, but is not limited to: 

 
Cheating on examinations, assignments, reports, or other work used to evaluate student performance. 
Cheating includes copying from another student’s work or allowing one’s own work to be copied, 
submitting another person’s work as one’s own, fabrication of data, consultation with an unauthorized 
person during an examination, or use of unauthorized aids. 

 
 
 



 
Tentative Course Outline 
 
1. Introduction 
  
2. Atomic And Nuclear Physics 

2.1. Photoelectric Effect 
2.2. Compton Effect 
2.3. Atomic Spectra 
2.4. Bohr’s Atomic Model 
2.5. De Broglie Waves 
2.6. Elements of Relativity 
2.7. Relativistic Mass Formula 
2.8. Relativistic Energy 
2.9. Relativistic Momentum 
2.10. Nuclear Constituents 
2.11. Notations of Isotopes 
2.12. Descriptions of Nuclear Particles (Mass, Charge, Spin) 
2.13. Binding Energy 
2.14. The Liquid Drop Nuclear Model 
2.15. The Decay Process 
2.16. Natural Radioactivity 
2.17. Induced Radioactivity 
2.18. Radioactive Families  

 
3. Interaction of Radiation With Matter 

3.1. Interactions of Heavy Charged Particles 
3.2. Interactions of Light Charged Particles 
3.3. Interactions of Gamma Radiation 
3.4. Interactions of Neutrons 
3.5. Types of Nuclear Reactions 
3.6. Kinematics of Nuclear Reactions 
3.7. Reaction Cross Sections  
3.8. Attenuation and Shielding 

 
4. Nuclear Reactors and Nuclear Power 

4.1. The Fission Chain Reaction 
4.2. Reactor Fuel, Moderator and Coolant 
4.3. Main Nuclear Plant Components 

 
5. Basic Concepts of Neutron Physics  

5.1. Fission 
5.2. Flux, Current, Source 
5.3. Reaction Rate Densities 
5.4. Fick's Law and the Diffusion Equation 
5.5. Solutions to the Diffusion Equation 
5.6. The Group Diffusion Model 
5.7. Two-Energy-Group Neutron Moderation 



6. Nuclear Reactor Theory 
6.1. Fundamental Neutronic Problems (Fixed-Source and Eigenvalue) 
6.2. Criticality 
6.3. Homogeneous Reactors - Flux Separability In Energy And Space 
6.4. One-Group Reactor Equation 
6.5. One-Group Flux Solution for Different-Shape Homogeneous Reactors (Slab, Parallelepiped, 

Cylinder, Sphere) 
6.6. Multiregion Problems - Reflector 

 
7. Nuclear Reactor Kinetics/Dynamics 

7.1. Classification of Time-Dependent Problems. 
7.2. Reactor Kinetics 
7.3. Reactivity Devices 
7.4. Temperature Effects On Reactivity 

 
8. Discussion of Basic CANDU Design  
 
9. Discussion of CANDU Computational Schemes  
 
10. Discussion of CANDU LOCA Calculations  
 
11. Hands-on Calculations with POWDERPUFS-V Lattice Computer Code, In-Class And Home Exercises  
 
12. Xe-I Kinetics, Calculations and Exercises  
 
 



Quantum Properties of Matter 
(and Light)

All figures reproduced from: R. Serway “Physics for Scientists and Engineers with Modern Physics”, third edition, 
volume II. 

2005  E. Nichita



Is light a wave or is it made up of 
particles?

• Newton
– particles (cites reflection and 

propagation in straight line)

• Huyghens
– wave (cites interference, refraction, 

diffraction)
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Beginning of 20th Century

• The wave theory of light was prevalent as 
it seemed to explain all phenomena 
involving light.
– reflection
– interference (diffraction as well)

• Moreover, Maxwell had shown light to be 
an electromagnetic wave (as were X rays).

• Huyghens seemed to have won the 
dispute, but.... 
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A few phenomena could not be 
explained by the wave theory

• Black body radiation
• Photoelectric effect
• Compton effect
• Atomic spectra 

2005  E. Nichita



Black Body Radiation
• A “black body” is a body that only absorbs and 

emits light, but does not reflect it.
• A black body emits light with a continuous 

spectrum.
• Attempts to explain theoretically the shape of the 

spectrum of the black body radiation based on 
classical theory had failed, especially for small 
wavelengths.

• Max Planck was able to explain the entire 
spectrum, by assuming that energy could only 
be absorbed or emitted in discrete units called 
quanta.  

2005  E. Nichita



Max Planck – Light Quanta

• Energy of one quantum

• Planck’s Constant

• Same dimensions as angular momentum
• Very small number

hfE =

sJh ⋅×= −3410626.6
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Photoelectric Effect

• When light is incident 
on the (metallic) 
cathode, electrons are 
emitted. (called 
photoelectrons) 
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Laws of the Photoelectric Effect

1. No electrons emitted if 
the frequency of the 
incident light is lower 
than a certain value, 
called the “cutoff 
frequency”.

2. The maximum KE of 
electrons increases 
linearly with light 
frequency.
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Laws of the Photoelectric Effect 
cont.

3. Above the cutoff 
frequency, the 
maximum number of 
photoelectrons is 
proportional to the light 
intensity.

4. Electrons are emitted 
almost instantaneously 
(10-9 s after beginning of 
illumination) although 
the classical 
electromagnetic theory 
would predict some 
delay.
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Einstein’s Theory of the PE Effect 
1. A light beam consists of quanta (photons), each 

of energy               (Planck’s hypothesis), 
travelling at the speed of light, c

hfE =
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Einstein’s Theory of the PE
2. Each photon gives all its energy 

instantaneously to an electron in the 
metallic cathode.  

– If, and only if, the photon’s energy is higher 
than the minimum binding energy in the 
metal (called the work function, ), an 
electron is emitted.

– Consequently, the maximum kinetic energy 
of an electron is:

Φ−= hfKEmax

Φ
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Values of Work Functions
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How Einstein’s theory explains the 
four laws of the PE effect

1. Since                              has to 
be positive for the electron to 
be emitted, it follows that 
nothing happens below a cutoff 
frequency.

2. describes 
exactly the linear relationship 
between the maximum kinetic 
energy and light frequency that 
was found experimentally.

Φ−= hfKEmax
cutofff

h
fKE =

Φ
>⇔> 0max

Φ−= hfKEmax

2005  E. Nichita



How Einstein’s theory explains the 
four laws of the PE effect

3. Since each photon has the same energy, equal 
to       , the intensity of the light is proportional 
to the number of incident photons per unit time.  
Since each photon transfers its energy to one 
electron, it follows that the number of emitted 
photoelectrons is proportional to the intensity of 
the incident light.

4. Since each photons interacts with a single 
electron, the energy transfer happens 
instantaneously, rather that over a period of 
time, as would be the case if energy was 
distributed uniformly in the wave. 

hf
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The Compton Effect
• Named after Arthur H. Compton (1892-1962)
• Interaction of em radiation with “free” electrons.
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Compton’s Measurements
• Frequency 

of 
scattered 
radiation 
depends 
only on 
scattering 
angle.
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Classical Theory - Inadequate

• Frequency of scattered radiation 
depends on beam intensity and time of 
exposure. 
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Compton’s Theory
• Photons undergo elastic collisions with 

“free” electrons. 
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Compton’s Theory cont.
• To explain the shift in wavelength, the 

laws of conservation of relativistic energy 
and momentum need to be applied.

• According to Compton’s theory:

epheph EEEE ′+′=+ 00

epheph pppp ′+′=+ 00

( )θλλ cos1
0

0 −=−′
cm

h

e
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Atomic Spectra

• Emission

• Absorption
• Atomic spectra are discrete (appear as 

lines) 
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Hydrogen Spectrum

• The wavelengths of emitted/absorbed  
electromagnetic radiation were found 
(empirically) to satisfy an interesting 
relationship: 

mn
nm

RH >⎟
⎠
⎞

⎜
⎝
⎛ −=    111

22λ
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Hydrogen Spectrum

• All lines obtained for a given m, are said to 
form a series.

• Balmer series, n=2 – first one discovered
(Johann Balmer)

2   1
2
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Rutherford’s Model of the Hydrogen 
Atom 

• Electrostatic 
force

• Centripetal 
force

• The two are one 
and the same

2

2
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Bohr’s Model of the Hydrogen Atom
• The hydrogen atom has only one electron.  
• The nucleus consists of only one proton
• Bohr started from Rutherford’s model, which 

assumed the negatively-charged electron to 
gravitate around the positively-charged proton 
on a circular orbit.
– The electrostatic attraction force acts as the 

centripetal force.
• Rutherford’s model had limitations

– According to the electromagnetic theory, orbiting 
electrons would radiate light continuously at the 
frequency they rotated, and in doing so they would 
lose energy, and eventually fall onto the nucleus.

– This phenomenon was never observed.
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Bohr’s Model of the Hydrogen Atom 
(cont.)

• Bohr’s additional hypotheses (nonrelativistic)
– Certain orbits (radii) are stable.  No radiative loss 

of energy occurs for these orbits.
– The allowed (stable) orbits are those for which 

the orbital angular momentum has values given 
by:

– Electrons can jump from one orbit to another.  
Only when such a jump occurs energy is either 
emitted or absorbed, in the form of a photon.

π2
   ; hnvrmL e ≡==
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Bohr’s Model of the Hydrogen Atom 
(cont.)

• Need to find the radius and energy of 
stable orbits (also called Bohr orbits).

• Start from equating the centripetal force 
with the electrostatic force

2

22

r
ek

r
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Bohr’s Model of the Hydrogen Atom 
(cont.)

• Relationship between radius and speed
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Bohr’s Model of the Hydrogen Atom 
(cont.)

• Expression of angular momentum

• Use the postulated values of the angular 
momentum to find the radii of the stable 
orbits.

(equation for r)
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Bohr’s Model of the Hydrogen Atom 
(cont.)

• Radii of stable orbits
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Bohr’s Model of the Hydrogen Atom 
(cont.)

• Energy of electron on a stable orbit

• Substitute previously found expression for

• Find simpler expression for energy (not yet final)
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Bohr’s Model of the Hydrogen Atom 
(cont.)

• Final formula for electron’s energy on 
stable orbit
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Bohr’s Model of the Hydrogen Atom 
(cont.)

• Transitions (jumps)
– When an electron jumps from one orbit to another, it has to 

either absorb or emit energy, in the form of a photon.  
– The energy of the photon equals the difference between the 

energies of the two orbits.  For an electron jumping from orbit n 
to orbit m, we have:  

– If n>m, the potential energy of the initial state (n) is larger than 
that of the final state (m) and energy is emitted in the form of a 
photon.  If m>n, the situation is reversed and a photon needs to
be absorbed. 
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Bohr’s Model of the Hydrogen Atom 
(cont.)

• Transitions 
– expressing the reciprocal of the wavelength of 

the photon:

Previously discovered
by Balmer for m=2 
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Bohr’s Model of the Hydrogen Atom 
(cont.)

• Transitions
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Light: Wave or Particle?
• Wave

– Reflection
– Refraction
– Interference
– Diffraction

• Particle
– Black body radiation
– Photoelectric effect
– Compton effect
– Discrete (line) atomic 

spectra

• Conclusion
– Light cannot be 

described entirely as 
either wave or particle.

– Wave behavior is 
displayed in some 
situations, while 
particle behavior is 
displayed in others.

– Light displays wave-
particle “duality”.
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Do other particles display the 
wave-particle duality?

• Louis de Broglie (1892-1987)
– Stated that all particles display the wave-

particle duality.
– Each particle (not just photons) has a wave 

associated with it.  The associated wave (also 
called De Broglie wave) satisfies one of the 
relations found to be true for photons:

p
hhp =⇔= λ

λ
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De Broglie waves and Bohr’s 
model

• The Bohr orbits are an integer number of 
electron wavelengths.

• We’ll prove this in the following slides
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De Broglie waves and Bohr’s 
model (cont.)
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De Broglie waves and Bohr’s 
model (cont.)
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De Broglie waves and Bohr’s 
model (cont.)

• The Bohr orbits are an integer number of 
de Broglie wavelengths

• Immediate consequence:

λnCn =

mv
h

p
h
==λ

mv
hnrn =π2

nhnvrm ne ==
π2

We have recovered Bohr’s 
quantization of angular 

momentum
2005  E. Nichita



De Broglie waves and Bohr’s 
model (cont.)

• The Bohr orbits are 
an integer number 
of de Broglie
wavelengths

• We can picture a 
stationary wave that 
goes along the Bohr 
orbit.
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Summary
• Each particle (not just photons) has an associated wave, 

called De Broglie wave.
• The existence of De Broglie waves for electrons is 

consistent with Bohr’s atomic model.
• De Broglie waves were demonstrated for other particles 

as well, by diffraction experiments.
• Quantum mechanics expands on these ideas (but we 

won’t go into quantum mechanics) and shows that each 
system of particles has an associated wave function 
which describes the system’s properties.

• The wave function (for any system) is found by solving 
the Schrödinger Equation.

ψ
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Special Relativity
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Special Relativity - Formulas
• Relativistic mass

• Relativistic momentum

• Relativistic (total) energy

• Relativistic kinetic energy
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Structure and States of the 
Atom
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Hydrogenoid Atoms

• The Hydrogen atom is the simplest 
possible.

• Next level of complexity: Hydrogenoid
atoms (ions)
– Atoms that have lost all but one of their 

electrons.
– Nucleus made of Z protons and N neutrons
– Bohr’s model applies very well to hydrogenoid

atoms.
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Hydrogenoid Atoms
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Bohr’s model for
Hydrogen and Hydrogenoid Atoms 

• The orbit of the electron, and its energy is 
characterized by one integer, called 
principal quantum number: n

• The state of the atom is characterized 
completely by the principal quantum 
number, n.

2

42
2

2 2
1 ekmZ
n

E e
n −=

2005  E. Nichita



More accurate model
(quantum mechanics)

• Four quantum numbers for each electron
– n = 1,2,3....   principal quantum number
– l = 0,1, 2...n  orbital quantum number
– ml = -l, -(l-1), ...0 ... (l-1), l  orbital magnetic

quantum number
– ms = -1/2 or +1/2              spin magnetic

quantum number
– Remember that electrons have an intrinsic 

“spin” angular momentum, equal to 1/2.  
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Significance and simplistic 
interpretation of quantum numbers

• We can have a slightly more complicated model 
of the atom, whereby orbits are elliptical. 
– n indexes the size of the major axis or, equivalently, 

the energy of the orbit
– l indexes how “oval” the orbit is (l=0 corresponds to a 

circle) or, equivalently, the angular momentum of the 
electron

– ml indexes the spatial orientation of the orbit plane or, 
equivalently, the z component of the angular 
momentum.

– ms indexes the orientation (or z component) of the 
spin

• So there is an additional quantum number, s, the spin 
angular momentum quantum number, which we don’t usually 
specify, because it is always fixed at ½ for electrons.
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n indexes the major axis of the 
ellipse (the energy)

n=1
n=2 n=3
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l indexes the minor axis of the ellipse 
(the orbital angular momentum)

• Quantum 
mechanical 
expression for 
angular 
momentum:

)1( += llL
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ml indexes the orientation of the plane of the orbit
(z component of the angular momentum)

• QM expression for 
Lz

lz mL =
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sl indexes the orientation of the 
spin

• The spin angular 
momentum 
number is the 
same in both 
cases, and equal 
to 1/2. 

• QM gives:

Reproduced form R. Serway, "Physics for Scientists and Engineers", 3rd edition

)1( += ssS

sz mS =
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Atoms with more than one electron
(Shell Model)

• Pauli’s exclusion principle:
– There cannot be more than one electron in a state 

characterized by the same combination of quantum 
numbers. 

– Shell
• All states with the same n

– Subshell
• All states with same n and l

– Orbital
• All states with same n, l, and ml

• Can “hold” two electrons (corresponding to ms = ±1/2)
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Atomic and Nuclear Constituents

• Atom
– Electrons
– Nucleus (made up of nucleons)

• protons
• neutrons

• The nucleus is “held together” by nuclear 
attraction forces.  These have to be stronger 
than the repulsive electrostatic forces.

• For neutral atoms, the number of protons in the 
nucleus equals the number of electrons in orbit.
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Some subatomic particles

• proton
• neutron
• electron (beta particle)
• positron
• photon (gamma particle)
• neutrino
• antineutrino
• alpha particle (2 protons + 2 neutrons)
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Properties of fundamental particles
• Mass (rest mass)
• charge 
• spin (denoted by s)
• parity

– property resulting from Quantum Mechanics. 
– describes the parity of the wave function

• All these quantities are important because 
they are conserved in nuclear reactions.

)()( rr −=⇔+ ψψ

)()( rr −−=⇔− ψψ
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Properties of Nuclei
• Atomic number – Z = number of protons
• Mass number – A = total number of 

nucleons (protons and neutrons)
• Number of neutrons – N 
• The atomic number Z identifies the nuclear 

species.
• Two nuclei with the same Z but different N 

are called isotopes.
• Notation:            X is the chemical symbol 
• Alternative notation: (Z,A)

XA
Z
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Other properties of nuclei
(parallel those of particles)

• Mass 
• charge (+Ze)
• spin (s)
• parity
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Atomic Mass Unit (amu)
• Defined as 1/12 of the mass of a C12 atom

– That means that it is 1/12 of the C12 nucleus, plus the 
mass of 1/2 electron.

• Atomic weight = Ratio between the mass of the 
atom and 1 amu (dimensionless number)

• Molecular weight = Ratio between the mass of a 
molecule and 1 amu (dimensionless number)

• 1 Mole – Quantity of a pure substance that has 
the same mass expressed in grams as the 
atom’s (or molecule’s) mass expressed in amu.

• 1 Mole Has NA =6.023x1023 atoms (molecules) 
• Na is the ratio between 1g and 1 amu. (There 

are NA amus in a gram)
2005  E. Nichita



Atomic Mass vs. Atomic Weight

• Atomic mass has dimensions of mass 
(e.g. Kg, g, amu, etc.)

• Atomic weight has no dimensions.
• Atomic weight is numerically equal to the 

atomic mass expressed in amus.
• 12C has an atomic mass of 12 amus and 

an atomic weight of 12.
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amu expressed in Kg

• NA atoms of 12C weigh 12 g.  It follows that 1 
amu weighs 1/NA grams.
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Other means of expressing mass
• Because of the mass-energy equivalence 

expressed by Einstein’s formula ,
mass can also be expressed in units of energy 
over c2.

• For example:

• Often in nuclear physics the energy is measured 
in MeV, and the mass in MeV/c2. To find the 
relation between 1kg and one MeV/c2 we write:
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Examples of elementary particle 
mass

0.5115.486E-49.1090E-31electron

939.571.0086651.6750E-27neutron

938.281.0072761.6726E-27proton

MeV/c2amukg

massparticle
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Atomic Weight for a Mixture of 
Atoms

• Consider a mixture of 30% (by atom) C 
and 70% (by atom) Al.  What is the 
average atomic weight of the mixture?

• Answer
– Assume there are N atoms in total
– of these

• NC=0.3N are C
• NAl=0.7N are Al
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Atomic Weight for a Mixture of 
Atoms (cont)

• The total mass of the mixture (in amu) is:

• The average mass of one atom (in amu) is:

)(7.03.0 amuNMNMMNMNm AlCAlAlCC +=+=

)(7.12137.0123.07.03.0

7.03.0

amuMM
N

NMNM
N
mM

AlC

AlC

=×+×=+=

=
+

==
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Atomic Weight for a Mixture of 
Atoms (cont)

• In general
– For a mixture of n types of atoms, each with 

atomic fraction Xi=Ni/N, the average atomic 
weight is:

– If the different types of atoms are isotopes of 
the same atom, the atomic fractions are called 
isotopic abundances.

∑
=

=
n

i
ii MXM

1
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Properties and Structure of 
Nuclei
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Nuclear Radius

• Assume that nuclei are made of “nuclear 
material” of the same density     for all 
species of nuclei.

• It follows that the mass of the nucleus is 
given by:

ρ

3
4 3RVm πρρ ==
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Nuclear Radius (cont)

• The mass of the nucleus is given also by 
the mass of its constituents (neutrons and 
protons)

• Because the mass of the proton and the 
one of the neutron are almost equal to 1 
amu, we can write:

pn ZmNmm +=

amuAamuZNamuZamuNZmNmm pn =+=+≅+= )(
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Nuclear Radius (cont)

• By writing the equality between the two 
masses, we have:

• Solving for R3, we obtain 
3

4 3RamuA πρ=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= amuAR

πρ4
33
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Nuclear Radius (cont)

• Solving for R, by taking the cube root on 
both hands, we have:

• It turns out that:

• So:

33

4
3 amuAR
πρ

=

mamu 15
3 1025.1

4
3 −×=
πρ

mAR 3151025.1 ××= −
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Binding Energy

• Since particles that constitute the nucleus 
stay together (held by nuclear interaction 
forces), the total energy of the nucleus 
must be lower than the total energy of the 
particles if they were separated.

• This is called the Binding Energy

( )[ ] ( )XEEZEZAB A
Zprotonneutron −×+×−=
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Binding Energy (cont.)
• Binding energy from a relativistic perspective

• The mass of the nucleus is smaller than the 
sum of the masses of its constituents.

20 cmE neutronneutron =
20 cmE protonproton =

( ) ( ) 2cXMXE A
Z

A
Z =

( )[ ] ( ) 22020 cXMcmZcmZAB A
Zprotonneutron −×+×−=

( )[ ] ( ){ }XMmZmZAcB A
Zprotonneutron −×+×−= 002
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Binding Energy per Nucleon

Reproduced from W.S.C. Williams " Nuclear and Particle Physics" 
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Question Period

• Q: If I climb to the top of the CN tower 
(approximately 550 m) will my body mass 
be larger?

• A: Yes, but not enough for people to 
notice.

( ) Kg
sm

msmKg
c

ghm

m
c

ghmcmmm
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12
28

2

2

2

2
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=
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=−
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Nuclear Models
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Shell Model
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Shell Model - Potential Well
• We can picture the 

nucleons (protons and 
neutrons) as “living” in a 
“potential well” created by 
the nuclear forces.

• The binding energy is the 
energy that needs to be 
communicated to the 
nucleons to allow all of 
them to exit the well.

n p 

p n 

E 
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More details on the potential well
• Nucleons can occupy different energy levels in the well, just like electrons can 

occupy different energy levels in an atom.
• The state of the nucleus is given by the states (energy, spin, parity) of all its 

nucleons.
• Pauli’s exclusion principle applies (No two nucleons can occupy the same 

state).

n p 

p n 

E 
A
Bb =   

Average binding energy per nucleon 

n p 
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More details on the potential well
• Depending on the “arrangement” of nucleons on energy levels inside the well, 

the nucleus can have different binding energies.
• The lowest energy level of the nucleus (corresponding to the largest binding 

energy) is called the ground level, and the corresponding state is called the
ground state. 

• Higher energy levels are called excited levels, and the corresponding states 
are called excited states.  

n p 

p n 

E State 1
(ground)

p n 

E 
n p State 2

(excited)

( ) ( )groundN
Z

excitedN
Z

excitedground

groundexcited

XMXM

BB

EE

>

>

>
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Nuclear Energy Levels

• Similar to 
atomic 
energy 
levels

Eg=0 

Efree 

B 
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Liquid Drop Model
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Binding Energy per Nucleon

Reproduced from W.S.C. Williams " Nuclear and Particle Physics" 
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Liquid Drop Nuclear Model

• Attempts to express the binding energy as 
a function of nuclear characteristics.

• Leads to a semiempirical formula.
– Shape of formula determined from the model
– Values of constants determined from 

measurement

( ) ),(2)1(
2

2

3
1

3
2

AZ
A

ZAa
A

ZZaAaAaB Acsv δ+−
−

−
−−=
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Liquid Drop Model – Meaning of Terms
• av – Volume effect – proportional to the “volume” of the nucleus, which 

can be considered to be roughly proportional to A.  This term was 
introduced because it was observed that the binding energy per nucleon 
is almost constant.

• as – Surface effect – proportional to the “surface” of the nucleus, roughly 
proportional to A2/3.  This negative term was introduced because the 
nucleons situated close to the surface have fewer neighbors, and hence 
contribute less to the binding energy.

• ac – Coulomb effect – electrostatic repulsion between protons has a 
potential energy               .

• aA – Asimmetry effect.  It vas observed that nuclei with N=Z are more 
stable, hence the binding energy is probably smaller if Z and N differ.  
This term accounts for that effect.

• Pairing term.  Introduced because it was found experimentally 
that two protons or two neutrons are bound stronger than a proton and a 
neutron.  It is zero for odd A,             for both Z and N odd
and             for both Z  and N even

3
1

2 )1()1(

A

ZZ
r

eZZ −
∝

−

),( AZδ

2
1

1

A
a p−

2
1

1

A
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Liquid Drop Model

• Numerical values of 
coefficients

12.0 MeVaP

23.6 MeVaA

0.71 MeVaC

17.8 MeVaS

15.7 MeVaV
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Nuclear Reactions
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General Expression

• Q value 

• Q>0 – exothermic reaction (provides energy to
the outside)

• Q<0 – endothermic reaction (needs
energy from outside in order to proceed)

• The liberated energy is found as kinetic energy 
of the products, and/or as energy of the emitted 
particles (photons or other) with zero rest mass
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Conservation Laws

• The following quantities are conserved in a 
nuclear reaction
– charge
– number of nucleons
– energy
– momentum
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Conservation Laws

• Conservation of charge

• Conservation of number of nucleons

2121 yyxx ZZZZ +=+

2121 yyxx AAAA +=+
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Conservation Laws

• If additional particles enter or exit the 
reaction, their charge an number of 
nucleons need to be accounted for when 
writing the conservation laws

• Example

• We can represent the electron as

−++→+ eYYXX y

y

y

y

x

x

x

x

A
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e0
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Conservation Laws

• Conservation of momentum

• Conservation of energy
– Kinetic + Rest

( ) ( ) ( ) ( )221 YPYPXPXP +=+

( ) ( )[ ]
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Fission

• Possible fission 
reactions

• Distribution of 
fragments

neutronsYXUn ++→+ 235
92

1
0

nMoSnUn

nSrXeUn

3

2
101
42

132
50

235
92

1
0

94
38

140
54

235
92

1
0

++→+

++→+

A

Fission Yield

70 120 170
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Radioactive Decay
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Radioactivity

• Discovered first by Henri Becquerel (1852-
1908).  

• Becquerel discovered that a mineral containing 
Uranium would darken a photographic plate 
even when the latter was wrapped in opaque 
paper.

• In 1903 Becquerel shared the Physics Nobel 
Prize with Pierre and Marie Curie, for their 
discovery and work on radioactivity.
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Radioactivity
• Some nuclei are stable, while others are 

unstable.
• Unstable nuclei decay, by emitting a particle 

and changing into a different nucleus.
• Most common types of decay (others possible 

too):
– Alpha (      ), Helium nucleus emission
– Beta (      ), electron emission
– Beta plus (        ) positron emission
– Gamma (      ), photon emission
– Electron capture (an electron is “captured” rather than 

emitted)

α42
β0

1−

γ00
β0

1
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Radioactive Decay

• Charge and number of nucleons are 
conserved.

• For gamma decay, technically the nucleus 
does not change into a different one.  Only 
its energy state changes.

• Electron capture (still classified as “decay”)

PYX m
n

mA
nZ

A
Z +→ −

−

YeX A
Z

A
Z 1

0
1 −− →+

parent
nucleus

daughter
nucleus

emitted
particle
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Alternative Notations

• General decay

• Alpha

• Beta minus

• Electron capture

),(),(),( mnmAnZAZ +−−→

α42)4,2(),( +−−→ AZAZ

),1(),( AZeAZ −→+ −

),1(),( 0
1 AZAZ −→+− β

υβ ~),1(),( 0
1 +++→ −AZAZ
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Characteristics of Radioactive 
Decay

• Nuclei decay randomly.
– It is impossible to predict which nuclei will decay in a 

given period of time, and which not.
– It is impossible to predict when a particular nucleus 

will decay.
• On average, for large initial numbers of nuclei 

and for short periods of time ∆t, the number of 
nuclei that decay within ∆t is proportional to the 
time ∆t, and to the original number of nuclei 
present at the beginning of the time interval.
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Derivation of the Law of 
Radioactive Decay

• Let N(t) be the number of X-type nuclei present 
at time t.

• Let ∆t be a short time interval.
• According to the second bullet on the previous 

slide, we have, on average:

• λ is called the decay constant, and is measured 
in s-1.

ttNttNtNN ∆××−=∆+−=∆ )()()( λ
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Derivation (cont)

• The previous can be rewritten as:

• which, considering that ∆t is small, yields:

)(tN
t
N λ−=
∆
∆

)(tN
dt
dN λ−=
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Derivation (cont)

• Eq. (3) is an ordinary differential equation with 
constant coefficients.  Its solution is of the form:

• The multiplicative constant C can be determined 
from the number of nuclei present at t=0.  

ctct eCCee =≡ −+−         ; λλ
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Derivation (cont)

• It follows that the number of X-type nuclei 
is given at any time t by:

• Law of Radioactive Decay

teNtN λ−×= 0)(
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Example

• At t=0, a sample of 24Na weights 1.0 mg.  
How many beta particles are emitted in an 
hour? (λ =1.2836x10-5 s-1)

• Solution
– The number of emitted particles equals the 

number of decayed nuclei:

( )tt eNeNNtNNN λλ −− −×=×−=−=∆ 1)( 0000
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Example

• The initial number of Na nuclei is:

• Hence the number of emitted particles is:

1623
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100.1
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×

=×
×

=×
×

=
×

==

−−

−−

AN

amu
Kg

amu
Kg

M
mN

( ) 153600102836.116 10133.111051.2
5

×=−××=∆ ××− −

eN

2005  E. Nichita



Half Life

• Definition
– The half life, T1/2, of a radioactive species is 

the time after which the initial number of 
nuclei decreases to one half.

• Expression
– By definition:

2
)( 0

2/1
NTN =

2005  E. Nichita



Expression of Half-Life

• This is equivalent to:

• Dividing be N0 we obtain: 
2

0
0

2/1
NeN T =× ×−λ

2
1

2/1 =×− Te λ
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Expression of Half-Life

• By taking the natural logarithm of both 
sides we get:

• Finally, we can solve for T1/2:

( )2ln
2
1ln2/1 −=⎟
⎠
⎞

⎜
⎝
⎛=×− Tλ

( )
λ
2ln

2/1 =T
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Half Life Important Notes

• Half life can be measured from any 
moment of time.  The number of nuclei left 
after T1/2 elapses will be half of those 
existent at t0. 

• The number of remaining radioactive 
nuclei never reaches zero.  However, it 
can become negligibly small.
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Exponential Decay
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Law of Radioactive Decay –
Probabilistic Interpretation

• N(t) out of N0 nuclei do not decay. 
• It cannot be determined a priori which 

nuclei do not decay and which do.
• The ratio N(t)/N0 can be interpreted as the 

probability of one nucleus not decaying
after time t.

t
ND eP ×−= λ
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Law of Radioactive Decay –
Probabilistic Interpretation

• Conversely, the probability that a nucleus 
does decay after time t is:

t
NDD ePP ×−−=−= λ11
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Activity
• The rate at which a radioactive sample decays is 

called activity.

• Equivalent definition

• Units:
– 1 decay/second = 1 Becquerel (Bq)
– 1 Curie = 3.7x1010 Bq

dt
tdNt )()( −≡Λ

)()()( 00 tNeNeN
dt
dtNt tt λλλ λλ ==−⇐−=Λ −−
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Average Life of a Nucleus

• At t=0 there are N0 parent nuclei.
• At time t, there are N parent nuclei left.
• At time t,                            decay in dt
• These nuclei have “lived” t before 

decaying.

dteNdtt tλ−=Λ 0)(
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Average Life of a Nucleus

• To get the average life, we need to sum 
(integrate) over dt and divide by the initial 
number of nuclei.
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Energy-Level Diagrams for Decay
(Decay Scheme)

• Q=[M(Z,A)-M(Z-n,A-m)-M(n,m)]c2

• Q>0 in order for the decay to be energetically possible
• By convention, the lowest energy on this graph is taken to 

be zero (energy expressed relative to the lowest value).

Mass 
(Energy) 

c2M(Z,A) 

c2M(Z-n,A-m)+ c2M(n,m)
(at rest)

Q 
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Multimodal Decay

• Some nuclei can decay in more than one way

Mass (Energy)

a%
(100-a)%
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Example of 
Energy Level 
Diagram with 
Multimodal 

Gamma Decay

Reproduced from W.S.C. Williams " Nuclear and Particle Physics" 
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Example of 
Energy Level 
Diagram with 
Multimodal 

Alpha Decay

Reproduced from W.S.C. Williams " Nuclear and Particle Physics" 
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• Example of 
Energy 
Level 
Diagram 
with 
Multimodal 
Beta Decay
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Multimodal Decay (cont)
• Branching fractions

– Fraction of nuclei that decay in a certain mode
– Have to add up to 100%

• Consider a species of nucleus that can decay by 
either reaction 1, or reaction 2.

• Let dN be the total number of nuclei that decay 
in dt.  The branching factors are defines as:
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Multimodal Decay (cont)
• Partial decay constants

• Partial half-lives (What the half 
life would be if only that decay 
mode was present).
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Radioactive Families 
(Decay Chains)

• Consider a nuclide whose daughter is also 
unstable and decays.

• This is called a radioactive family, or 
series.

• Radioactive families can have more than 
two members.
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Example of Radioactive Family

 Reproduced from W.S.C. Williams " Nuclear and Particle Physics" 
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Atom Density
• Also called number density.
• Is the Number of Atoms per Unit Volume
• Connection with (mass) density

– n = # of atoms in volume V
– M = mass of each atom (dimensions of mass) 
– M = atomic weight (dimensionless)
– N = Atom density

V
nN =

V
m

=ρ )(
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g
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Interaction of Radiation with 
Matter

2005  E. Nichita



Heavy Charged Particles
e.g. alpha particles

• Interact mostly with electrons (there are 
usually much more electrons than nuclei) 
via Coulombic force

• Are much heavier than electrons
• Lose little energy in each individual 

interaction with any one electron
• Eventually do slow down as a 

consequence of the many interactions 
• Have straight-line trajectories
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Fast Light Charged Particles 
(e.g. electrons)

• Interact mostly with electrons (there are usually 
much more electrons than nuclei) via Coulombic
force

• Are much of the same mass as electrons
• Have broken-line trajectories
• Slow down quickly, after only few collisions. 
• Lose energy by two mechanisms

– collisions (Can lose a lot of energy in each individual 
interaction with any one electron)

– Radiation (When accelerated, incident electrons 
produce bremsstrahlung - electromagnetic radiation –
photons)
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Photons

• Can have several types of interactions (all 
depend on energy)
– Photoelectric effect
– Compton Scattering
– Pair production
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Neutrons

• Interact with nuclei via nuclear forces, since they 
have no charge, hence they cannot  interact 
electrostatically with electrons

• Possible reactions
– Elastic scattering
– Inelastic Scattering
– radiative capture (absorption)
– (n, 2n)
– fission
– n, charged particle
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Photon Attenuation 

• Attenuation of a collimated beam
– Consider a beam of photons of intensity I0 that hits a 

target of thickness xt, and a collimated detector that 
measures the intensity of the beam emerging from 
the target.  The fact that the detector is collimated 
means that only the particles that have not interacted 
in any way are detected. 

– The intensity is defined as the number of photons that 
pass through a surface S per unit time per unit area.

tS
N

I p

×
=
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Photons
• Attenuation of a collimated beam

• The atom (number) density of atoms in the slab 
is Na. (number of atoms per unit volume) 

• The area of the material surface perpendicular 
to the beam is denoted by S. 

I0 I

xt

S

Xt
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Photons
Attenuation of Collimated Beam

• Consider a thin “slice” of material, of thickness 
dx situated at depth x in the material.

• Consider each atom can be represented as a 
hard ball of radius, ra , and with a corresponding 
cross-section area
– Also called “microscopic cross section”

• The number of atoms in the slice is
– where Na is the atom density

• Consider the photons to be infinitely small 
(points)   

2
arπσ =

SdxNdN a=
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Photons
Attenuation of Collimated Beam

• Thin slice of material

x x+dx

2005  E. Nichita



Photons
Attenuation of Collimated Beam

• View of the dx slice from the photons’
perspective

Total area: S 

Area "covered" by atoms:  σ×adN  
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Photons
Attenuation of Collimated Beam

• The probability that a photon “hits” an 
atom equals the ratio between the area 
“covered” by atoms and the total area of 
the slice.

• Let Np(x) be the total number of photons 
that enter the slice over a time t

• Let Np(x+dx) be the total number of 
photons that exit the slice dx over a time t  

StxIxNp )()( =

StdxxIdxxNp )()( +=+
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Photons
Attenuation of Collimated Beam

• The probability that a photon interacts with an 
atom

• Attenuation coefficient

• Number of photons that interact and are 
therefore removed from the beam

σµ ×= aN

dxNdPNdN pcollpp ××=×= µ

dxdxN
S

dxSN
S

dNdP a
a

coll ×=××=
×××

=
×

= µσσσ
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Photons
Attenuation of Collimated Beam

• Setting up the differential equation
• Account for the fact that the number of photons 

that interact represent the change in the number 
of photons that exit the slice, with a negative 
sign

• Solution

• Np0 is the number of photons entering the 
material at x=0 over time t

dxxNxdN pp ××=− µ)()(

x
pp eNxN µ−= 0)(

2005  E. Nichita



Photons
Attenuation of Collimated Beam

• Given that

• We also have

xp eI
tS
xNxI µ−=
×

= 0
)()(

tS
NI p

×
=
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Photon Attenuation

• Exponential attenuation
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Np(x)

or

I(x)

2005  E. Nichita



Reaction (Collision) Rate

• For a thin slice of thickness dx:

µµµ

µ

)()()(

)(
volumetime
collisions ofnumber 

xI
St

tsxI
St
xN

dxSt
dxxN

dxSt
dN

FR

p

pp

=
×

∆××
=

×
=

=
××

××
=

××
=

=
×

=≡
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Neutron Attenuation

• Same reasoning as for photons, but with a 
few specific features
– Instead of the density of atoms previously 

denoted by Na we talk about the density of 
nuclei, denoted simply by N.  That is because 
neutrons interact with nuclei and not with 
atoms as a whole.

• The product       is called macroscopic 
cross section and denoted by  

σN
Σ

σN=Σ
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Neutron Reaction (Collision) Rate

• Same as for photons, but with different 
notations

Σ=≡ IFR
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Microscopic Cross Sections 
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Consider a single nucleus in a parallel beam of monoenergetic 
neutrons 
 

 
 
Assume (for now) that scattering and absorption are the only 
possible reactions. 
 

[ ]smnI // 2  
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Reaction Rates (for a single nucleus) 
 

ast RRR +=  
 
Probability of a Certain Reaction Type 
 

t

s
s R

RP =  
 

t

a
a R

RP =
 

 
1=+ sa PP  
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Microscopic Cross sections for Individual Reactions 
 

tt IR σ=  
 

stssststs PIPIPRR σσσσ ≡⇒===  
 

ataaatata PIPIPRR σσσσ ≡⇒===     
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We can write: 

I
Rt

t =σ  
 

I
Ra

a =σ  
 

I
Rs

s =σ  
• The microscopic cross sections can hence be interpreted as the 

probability of interaction (with one particular nucleus), per unit 
incident intensity. 
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The sum of individual microscopic cross sections equals the total 
macroscopic cross section.  In our simplified case 
 

sat σσσ +=  
For the general case: 
 

...++++= fiet σσσσσ γ  

 

eσ  
iσ
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Energy Dependence of Microscopic Cross Sections 
 
• So far we have assumed the beam to be monoenergetic 
• In reality, neutrons can have different energies. 
• The microscopic cross sections depend on the energy of the 

incident neutrons.  The nucleus appears larger or smaller 
depending on how fast the incoming neutron is moving! 

)(Ett σσ =  
 

)(Eaa σσ =  
 

)(Ess σσ =  
Reaction rate per nucleus 

)()( EIER σ=  
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Energy Dependence of Microscopic Cross Section 
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Volumetric Reaction (Collision) Rate 
(Collision Density) 

NR
V

NR
F nuclei ×=

×
= −

−
nucleussingle

nucleussingle

 
 
Where N is the number density of nuclei. 
 

Σ=×= INIF σ  
We have thus recovered the formula obtained previously by using 
the attenuation of a collimated beam. 
 
Dependence of the energy of the incident neutrons 
 

)()()( EINEIEF Σ=×= σ  
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Macroscopic Cross Sections for Mixtures 
 
Consider a mixture of nuclei with number densities Ni.bombarded 
by a parallel beam of monoenergetic neutrons of intensity I. 
 
The volumetric reaction rate density for each nucleus type i is: 
 

iiii INIF Σ=×= σ  
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The total reaction rate density is: 
 

Σ=Σ=

=×=×==

∑

∑∑∑

II

NINIFF

i
i

i
ii

i
ii

i
i σσ

 

The total macroscopic cross section equals the sum of the (partial) 
macroscopic cross sections for each nuclear species 
 

∑∑ =Σ=Σ
i

ii
i

i N σ
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Neutron Beam Intensity

• Let n(x) be the 
neutron density 
(neutrons/cc)

• Consider 
monoenergetic
neutrons (All have 
the same speed)

• Let v be the speed 
of neutrons.

x
dx

S
v
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Neutron Beam Intensity

• Consider a thin “slice” of beam, of 
thickness dx, that crosses surface S.

• There are                    neutrons in this 
slice.

nSdxdNn =

2005  E. Nichita



Neutron Beam Intensity

• It takes the 
neutrons in the 
slice time 
to cross surface S.

• The beam intensity 
is therefore:

v
dxdt =

v

v

n
dxS

nSdx
Sdt
dN

I n ===
x

dx

Sv 
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Neutron Flux 
 
What happens if we have a small piece of material bombarded by 
two beams of monoenergetic neutrons (both having the same 
energy)? 

 
Reaction (collision) Rate 

( )
( ) ΦΣ=Σ=Σ+=

=Σ+=×+×=

vvv 21

2121

nnn

IININIF σσ
 

Neutron flux for monoenergetic neutrons:  
vn=Φ  
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Neutron Current 
 
Consider a beam of monoenergetic neutrons 
 

 
 
The intensity is given by: 
 

vnI =  
 
The flux is given by 
 

vn=Φ  
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The current is a vectorial quantity: 
 

vnJ =  
 

2005  E. Nichita



For two intersecting beams of different-energy neutrons: 
 

 
Neutron Flux 

212211 vv Φ+Φ=+=Φ nn  
 
Neutron Current 

212211 vv JJnnJ +=+=  
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For many intersecting beams: 
 

∑∑ Φ==Φ
i

i
i

in iv
 

 

∑∑ ==
i

i
i

i JnJ iv
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Usefulness of Neutron Flux 

 
Consider a small sample of material placed at the intersection of several 
beams of neutrons. 
 
The total collision density in the sample is equal to the sum of the 
collision densities due to the neutrons in each beam. 
 

∑=
i

iFF
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We rewrite the expression for the total collision density 
 

ΣΦ=ΦΣ=

=Φ×Σ==

∑

∑∑

i
i

i
i

i
iFF

 

So: 
 

ΣΦ=F  
 
Regardless of how many beams we have (one or more). 
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Usefulness of Neutron Current 
 
Consider a monoenergetic neutron beam that intersects a plane surface. 
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We want to determine the rate at which neutrons cross this surface. Per 
unit area. 
 

tS
NR
∆
∆

=
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                       Before                                          After ( t∆  elapsed) 
 

  
 
This is a side view.  Imagine the figure to be 1 cm thick. 
 

n̂  n̂  
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The rate at which neutrons cross the surface in t∆ is given by the 
neutrons in the marked region. 
 

nJnnnnn
tS

tnS
tS
Vn

tS
NR

====

=
∆

∆
=

∆
∆

=
∆
∆

=

)v(vcosv

cosv

θ

θ

 

 

2005  E. Nichita



2005  E. Nichita



 Multiple Beams 
 
The number of neutrons crossing the surface per unit time per unit area is 
the sum of the neutrons in each beam that cross the surface per unit time 
per unit area. 
 

nJnJ

nJRR

i
i

i
i

i
i

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

===

∑

∑∑
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Energy Dependence of Neutron Density, Flux and Current 
 
Consider now a parallel beam that has neutrons of different energies 
(speeds).   
 
 
 n=dn/dE 

dE 

Dark Grey Area= 
Neutrons with Energy 
Between E and E + dE 

E1 E2 

Light Grey Area= 
Neutrons with Energy 
Between E1 and E2 
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 (volumetric) density of neutrons with energy less or equal to E. 
 

)(En  
 
Neutron density spectrum 
 

dE
EndEn )()( =

 
 
 (volumetric) density of neutrons with energy between E and E+dE. 
 

dEEn )(  
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 Beam intensity for neutrons with energy between E and E+dE 
 

dEEEnEdI )(v)()( =  
 
 
Energy-dependent beam intensity (Beam Intensity Spectrum) 
 

)(v)()( EEnEI =  
 
Energy-dependent Flux (Flux spectrum) 
 

)(v)()( EEnE =Φ  
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Energy Dependent Current (Current Spectrum) 
 

)(v)()( EEnEJ =  
 
Total Reaction Rate for Reaction x  
 

dEEEdEEEEnR xxx )()()()(v)(
0

ΣΦ=Σ= ∫ ∫
∞

 

 
Subscript x can stand for total collisions, or just absorption, or elastic 
scattering, etc. 
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Energy Loss in Scattering Collisions 
 
Read section from textbook  
 
Important Results 
 

EE
A
AE α=⎟

⎠
⎞

⎜
⎝
⎛

+
−

=
2

min 1
1)'(

 
 
The energy of the scattered neutron is always lower than the energy of 
the incident neutron. 
 
The slowing down of neutrons by elastic collisions is called moderation. 
 
The lower the mass number of the target nucleus, the lower the minimum 
energy of the scattered neutron. 
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For 235U, we have: 
 

EEE
A
AE 98.0

236
234

1
1)'(

22

min =⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

+
−

=
 

 
Not an effective moderator. 
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For 1H we have: 
 

0
2
0

1
1)'(

22

min =⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

+
−

= EE
A
AE

 
 
Effective moderator.  A neutron can lose all its energy in an elastic 
collision with a Hydrogen nucleus (proton). 
 
Hydrogen is present in water.  Water is used as moderator. 
 
The bonds with O are very weak compared to the forces entailed in the 
elastic collision.  The H nucleus can be considered free. 
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Neutron Attenuation Revisited 
 
Parallel beam of monoenergetic neutrons 
 
For such a beam 
 

JI ≡Φ≡  
 

 

dx

S

x
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Neutron balance in the volume of thickness dx 
 

SdxxxSdxxISxI )()()()( ΦΣ=+−  
 
 

dx 

S

x

neutrons 
entering the 
volume 

neutrons 
exiting the 
volume 

neutrons colliding 
(reacting) in the 
volume 
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The neutron balance equation can be rewritten: 
 

SdxxIxSdxxISxI )()()()( Σ=+−  
 
Dividing by Sdx  on both sides we obtain 

)()()()( xIx
dx

dxxIxI
Σ=

+−
 

Equivalent to: 
 

)()()()()()( xIx
dx

xdIxIx
dx

xdI
Σ−=⇔Σ=−
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If the macroscopic cross section is constant, then: 
 

)()( xI
dx

xdI
Σ−=

 
 
Which can be integrated to obtain: 
 

xeIxI Σ−= )0()(  
Exactly what we obtained before, by using a different kind of 
reasoning. 
 
Moral:  If assumptions are right and reasoning correct, the 
results are the same regardless of the method used. 
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Mean Free Path 
 
Neutrons that react (collide) between x and x+dx have had a 
"free path" of length x. 
 
To find the mean free path, we need to average over all the 
neutrons that interact from x=0 to x=∞.   
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The numerator is integrated by parts to give 
 

2
0

2

00

0

'

0

1
Σ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ

−=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ

−=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ

−=

∞
Σ−

∞ Σ−
∞

Σ−
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The denominator integrates as: 
 

Σ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Σ

−=
∞

Σ−∞
Σ−∫

1

00

x
x edxe

 
 
It follows that: 

Σ
=

Σ

Σ=
1

1

1
2

λ
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Fission
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Fission 
 
 

γµν ++++→+ − enBAXn B

B

A

A

X

X

A
Z

A
Z

A
Z

0
1

1
0

1
0

~~
 

 
32~ or=ν  

 
A & B = Fission Products (Fission Fragments) 
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Conservation Laws 
 
Number of nucleons 
 

ν~++=+ BAnX AAAA
 

 

ν~1 ++=+ BAX AAA  
 
Charge 

µ~−+= BAX ZZZ  
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Energy 
 

[ ] [ ]
γµν EeMcnMc

BMAMcXMnMc
+++

++=+

)(~)(~
)()()()(

22

22

 
 

M is the (total) relativistic mass 
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Using the rest mass and kinetic energy E, we have: 
 
 

[ ]
[ ]

enBA

n

EEEEE
eMcnMc

BMAMc

EXMnMc

µνγ

µν
~~

0
2

0
2

00
2

00
2

)(~)(~
)()(

)()(

+++++
+++

++=

=++

 

 
M0 is the rest mass 
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The above can be rewritten using the Q value: 
 

[ ]
[ ]

n

n

EQeMcnMc

BMAMc

EXMnMc

++++

++=

=++

)(~)(~
)()(

)()(

0
2

0
2

00
2

00
2

µν  

 
For fission, Q is approximately 200 MeV 
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Distribution of Fission Energy 
 

 
 
Most energy is taken by fission fragments and deposited 
locally. 
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Fission Mechanism (simplified) 
 
 
Fission occurs through the formation of a compound nucleus 
which, in turn, can decay very rapidly in several different 
ways. 
 

XXn X

X

X

X

A
Z

A
Z ′→+ +11

0  
 

⎩
⎨
⎧

++→
++→

′+

n)prompt  - 2 (mode       ~''  
)prompt  - 1 (mode            ''  1

nBA
BA

X
p

A
Z
X

X ν
γγ

 

 

32 −=pν  

2005  E. Nichita



Both A' and B' can be stable or further decay in several 
possible modes: 
 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

+
↓

+⎯→⎯
+⎯→⎯
+⎯→⎯

⎯→⎯

−

−

neutron) (delayed               
                      (fast)        

4) (mode           ''  
3) (mode             
1) (mode                    

stable)  was'(               

'
0
1

0
1

nA

A
A
A

AA

A
LE

HE

β
β
γ

λ

λ

λ

 

 
If A' decays according to mode 4, then it is called a precursor 
and A'' is called an emitter. 
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We cannot predict in advance which nuclei will be 
precursors, but we can predict, on the average how many will 
do so.  This number is equal to the number of delayed 
neutrons emitted, called the delayed neutron yield. 

fissionsof#
neutrons delayed of #

=dν  
 
We cannot predict how many prompt neutrons will be emitted 
in each reaction either.  But we can predict how many will be 
produced on the average.  This is called the prompt neutron 
yield.   
 

fissionsof#
neutronsprompt  of #

=pν
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On the average, the fission reaction can be written: 
 

γµνν +++++→+ ennBAXn ddpp  
 
The total neutron yield is defined as: 
 

pd ννν +=  
 
The delayed neutron fraction is: 
 

ν
νβ d=
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Delayed Neutrons 
 
Are emitted by emitters which result from the beta decay of 
precursors. 
 
There are 6 precursor (delayed neutron) groups, based on 
their half-life. 
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Fission Products (Heavy Nuclei) 
 
Mass is distributed asymmetrically. 
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Energy Dependence of Fission Cross Section for 235U 
 
 

 
 
235U is fissile, i.e. undergoes fission with near-zero energy 
neutrons with high probability. 
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Energy Dependence of Fission Cross Section for 238U 
 

 
 
238U is fissionable, but not fissile, i.e. it can undergo fission, 
but with higher energy neutrons and with lower probability. 
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Energy Spectrum of Fission Neutrons 
 
Normalized Energy Spectrum 
 

∫
∞=≡
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It follows that: 
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Energy Spectrum of Fission Neutrons 
 
Prompt-neutron spectrum (Eavg=2MeV) 

 
 
Delayed-neutron energies are slightly lower. 
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Facts 
 
• Fission neutron energies are much higher than thermal 

energies (0.025 eV), so they are not appropriate for 
efficient fission in fissile materials. 

• To achieve fission efficiently, the neutrons need to be 
slowed down (their energy needs to be reduced).  This 
process is called moderation.  It is achieved by elastic 
collision with light nuclei (usually Hydrogen or 
Deuterium) 

• Reactors that use thermal neutrons for fission are called 
Thermal Reactors. 
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Fission-Related Parameters 
 

Capture-to-fission ratio 

fσ
σ

α γ=
 

Number of neutrons released per absorbed neutron. 
 

a

f

σ
σ

νη =  
 
For mixtures of fissile and non-fissile elements: 
 

∑ Σ
Σ

=
i

fii
a

νη 1
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Nuclear Fission Reactors
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Thermal Reactor Components 
 
• Fuel - consists of nuclei that fission liberating energy 
• Moderator - slows down fast neutrons resulting from 

fission to thermal energies so they can fission fuel 
nuclei 

• Coolant - removes the heat 
 
The three can be: 
• mixed together → Homogeneous Reactor 
• separated → Heterogeneous Reactor 

 
Most reactors are heterogeneous. 
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Power Reactors 
 
• Pressurized Water Reactors 
• Pressurized Heavy-Water Reactors (CANDU) 
• Gas-Cooled Reactors 
• Other 
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CANDU Reactors 
 
• Heterogeneous 

 
• Fuel: Natural Uranium Oxide  

o (UO2 0.7% 235U, 99.3% 238U) 
• Coolant: Heavy Water (D2O) 
• Moderator: Heavy Water (D2O) 
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CANDU Reactor Schematic 
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CANDU Reactor - How it Works 
 
• Fissions take place in the fuel 
• Most energy from fissions is taken up by fission 

fragments which stop in less that one micron. 
• In stopping, the fission fragments' kinetic energy 

becomes heat, which raises the fuel temperature. 
• The fuel is cooled by the coolant, which takes the heat 

from the fuel to the steam generators. 
• Neutrons are also produced from fission. 
• Fission neutrons are slowed-down by elastic collisions 

in the moderator and, to a smaller extent, in coolant. 
• Once they become thermal, neutrons can induce new 

fissions, keeping the chain-reaction going. 
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CANDU Reactor - How it Works (cont.) 
 
• Part of the neutrons get absorbed by radiative capture 

or "leak" out of the reactor.  These do not induce 
fissions. 

• On the average, only one neutron per each fission 
succeeds in inducing a new fission, so there is a 
uniform rate of fissions and not an avalanche of 
fissions. 
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Neutron Diffusion and Moderation 
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General Nomenclature 
 
Consider a quantity, say the number of collisions Ncoll: 
 
We call rate, the ratio between the amount of that quantity that is 
found or produced between time t and time t+dt and dt. (i.e. the 
collision rate is the ratio between the number of collisions that 
occur between t and t+dt divided by dt): 
 

dt
dNR coll

coll =  
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We call (energy) spectrum the ratio between the amount of that 
quantity that is found or produced between energy E and E+dE and 
dE (i.e. the collision spectrum is the ratio between the number of 
collisions suffered by neutrons with energies between E and E+de 
and dE ): 

dE
dNEN coll

coll =)(
 

 
We call the normalized spectrum the ratio between the spectrum 
and it's integral over energy.  
 

coll

coll

coll

coll
normalized N

EN

dEEN

ENEN )(

)(

)()(

0

==

∫
∞
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We call (volumetric) density, the ratio between the total quantity 
existing or produced in volume dV and dV (i.e. the collision 
density is the ratio between the number of collisions suffered by 
neutrons in volume dV and dV ) 
 

dV
dNn coll

coll =  
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We can have names that imply double ratios, e.g. 
 
Collision density spectrum. - the ratio between the number of 
collisions suffered by neutrons in dV with energies between E and 
E+dE and dVdE  
 

dVdE
dN

En coll
coll =)(

 
 
Also called energy-dependent collision density or collision density 
per unit energy.  
 

2005  E. Nichita



Collision density rate: 

dVdt
dNtr coll=)(  

 
Oftentimes, when talking about double ratios people omit to name 
one of them, so you must pay attention to the context.   
 
For example, one will often refer to the collision rate or collision 
density, when, in fact, meaning collision density rate, or even 
collision density rate spectrum (same as energy-dependent 
collision density rate)  
 
The same letter is sometimes used to denote different quantities. 
 
Always look at the context. 
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Recapitulation of Basic Concepts 
 

 
Volumetric total reaction (collision) rate density for 
monoenergetic neutrons 
 

φtF Σ=  
or 
 

vnF tΣ=  
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Reaction rate for neutrons with energies between E and 
E+dE: 
 

v(E))()( ××Σ= dEEnEdF  
 
(Total) Reaction rate for neutrons of all energies: 
 

∫∫
∞∞

Σ=Σ=
0

t
0

)()(v(E)dE)()( dEEEEnEF t φ
 

 
where 
 

v(E))()( EnE =φ  
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Reaction Rates for Individual Reactions 
 
Scattering reaction rate density: 
 

∫
∞

Σ=
0

)()( dEEEF ss φ
 

 
Absorption reaction rate density (number of neutrons 
absorbed per cm3 per s): 
 

dEEEF aa )()(
0

φ∫
∞

Σ=
 

 

2005  E. Nichita



Fick's Law (Diffusion Law) 
 
• Will accept it without proof. 
• Valid far from interfaces. 
• Valid for materials with relatively low absorption. 

 
Gives the neutron current as a function of the neutron flux 
 
Assume monoenergetic neutrons 
If the flux only varies along the x axis: 

 

dx
dDJ x
φ

−=  
 
D = Diffusion Coefficient 
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In three dimensions (and monoenergetic neutrons): 
 

φφ ∇−=−= DDgradJ  
 
Definition of gradient: 
 

⎥
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⎥
⎥
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Number of particles crossing a surface of orientation n  per 
unit time per unit area: 
 

nJJn ⋅=  
 
 

3
trD λ

=  
 
Transport mean free path 
 

)1(
11
µ

λ
−Σ

=
Σ

=
str

tr  
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Average of the cosine of the scattering angle 
 

θµ cos=  
 
 

 
 
 

A3
2

=µ  

θ 
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Neutron Balance Equation (equation of Continuity) for 
Monoenergetic Neutrons 

 
 
Expresses the conservation of neutrons 
 
[ ]
[ ]
[ ]

[ ]dV from leakageneutron  of Rate
dV in volume absorptionneutron  of Rate
dV in volume productionneutron  of Rate

dV  volumesmall ain number neutron in  change of Rate

−−
−=

=
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),,( zyxr =  

x 

y 

z 

dx 

dy 

dz 
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Infinitesimally small element means that: 
 
• whenever we integrate over its volume, we can 

approximate the neutron density, neutron flux and neutron 
current to be constant throughout the volume. 

• whenever we integrate over a face, we can assume the 
neutron density, neutron flux and neutron current to be 
constant over that face 

• whenever we integrate over an edge, we can assume the 
neutron density, neutron flux and neutron current to be 
constant along that edge 
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We cannot make the same approximation when we take 
differences of quantities (neutron density, flux, current) at 
two points in the volume.  That is because the difference is 
already a very small number, comparable to the quantity's 
variation from point to point. 
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Number of neutrons in dV 
 

ndV  
 
Production rate 
 

sdVRp =  
 
Absorption Rate 
 

dVR aa φΣ=  
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Infinitesimal (i.e. very small) Volume 
 

 
 

),,( zyxr =  

x 

y 

z 

dx 

dy 

dz 

A B

CD

A' B' 

C' D'
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Leakage Through Face BCC'B' 
 

 

dydzudzzdyydxxJLKLK xBBCCx ˆ
2

,
2

,'' ⋅⎟
⎠
⎞

⎜
⎝
⎛ +++≅=+  

( )dydzzydxxJLKLK xBBCCx ,,'' +≅=+  

),,( zyxr =  

x 

y 

z 

dx 

dy 

dz 

A B

CD

A' B' 

C' D' 
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Leakage Through Face ADD'A' 
 

 

( )dydzudzzdyyxJLKLK xAADDx ˆ
2

,
2

,'' −⋅⎟
⎠
⎞

⎜
⎝
⎛ ++≅=−  

( )dydzzyxJLKLK xAADDx ,,'' −≅=−  

),,( zyxr =  

x 

y 

z 

dx 

dy 

dz 

A B

CD

A' B' 

C' D' 
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Net Leakage Along X Axis 
 

( ) ( )dydzzyxJzydxxJ
LKLKLKLKLK

xx

AADDBBCCxxx

,,,,
''''

−+≅
≅+=+= −+

 
 
Let's remember that: 
 

( ) ( ) ( )
dx

dydzzyxJzydxxJzyx
x
J xxx ,,,,,, −+

=
∂
∂

 
 
Hence: 

( ) ( ) dxzyx
x
JdydzzyxJzydxxJ x

xx ),,(,,,,
∂
∂

=−+  
 

( ) ( )

dxdydzzyx
x
J

dydzzyxJzydxxJLK

x

xxx

),,(

,,,,

∂
∂

=

=−+≅
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Total Leakage out of dV 
 

( ) ( )dxdydzJdxdydzJdivdxdydz
z
J

y
J

x
J

dxdydzzyx
z
Jdxdydzzyx

y
J

dxdydzzyx
x
J

LKLKLKLK

zyx

zyx

zyx

zyx

⋅∇==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂

∂
+

∂
∂

=

=
∂
∂

∂

∂
+

∂
∂

=

=++=

,,

),,(),,(),,(

 

 
Definition of divergence for a vector function ),,( zyxf : 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∂
+

∂
+

∂
=⋅∇≡

dz
f

dy
f

dx
fffdiv

 

2005  E. Nichita



Rate of Change of Number of Neutrons in dV 
 

dxdydz
t
ndV

dt
tndttn

dt
dVtndVdttn

dt
tneutronsdttneutronsRchange

∂
∂

=
−+

=

=
−+

=
−+

=

)()(

)()()(#)(#
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Neutron Balance Equation for DV 
 

dxdydzJdxdydzsdxdydzdxdydz
t
n

a ⋅∇−ΦΣ−=
∂
∂

 
 
Dividing by the volume dxdydzdV =  we obtain: 
 

Js
t
n

a ⋅∇−Σ−=
∂
∂ φ  

 
 
Valid regardless of whether Fick's law holds true or not 
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Neutron Balance in the Diffusion Approximation 
 
Assume Fick's Law to be true:  
 

Φ∇−= DJ  
 
Substitute into the neutron balance eq: 
 

( ) sD
t
n

a +Σ−∇−⋅−∇=
∂
∂ φφ

 
 
This is the time-dependent diffusion equation for monoenergetic 
neutrons. 
 
It is important because by solving it we find the flux and the flux allows 
us to calculate all reaction rates, including fission rate - which is really 
what we are after, by using φΣ=R . 
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If the diffusion coefficient is constant: 
 

( ) sD
t
n

a +Σ−∇⋅∇=
∂
∂ φφ

 
 
Remember the definition of the Laplacian: 
 

( ) 2

2

2

2

2

2
2),,(

z
f

y
f

x
fffzyxf

∂
∂

+
∂
∂

+
∂
∂

=∇⋅∇=∇≡∆  
 
The diffusion eq. can then be rewritten: 
 

sD
t
n

a +Σ−∇=
∂
∂ φφ2
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If we keep in mind that 
 

v
v φφ =⇒= nn

 
 
We obtain: 
 

sD
t a +Σ−∇=
∂
∂ φφφ 2

v
1

 
 
Steady-State Situation (no time dependence) 
 

02 =+Σ−∇ sD aφφ  
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Dividing by D: 
 

02 =+
Σ

−∇
D
s

D
a φφ

 
 
Introducing notation (Diffusion Length): 
 

a

DL
Σ

=2

 

D
s

L
=+∇− φφ 2

2 1
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Interface Conditions for the Diffusion equation: 
 

BA φφ =  
 

⊥⊥ = BA JJ  
 
Vacuum Interface 
 

0)( =dφ  
 

trd λ71.0=  
 

Dd 13.2=  
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The Concept of Infinite Homogeneous Medium 
 
Medium is the same at any point 
Hence, there is no reason why the flux would be different an any 
particular point 
 

ctzyx =Φ=Φ ),,(  
 
The current is given by Fick's Law 
 

0
0
0
0

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
Φ∂
∂
Φ∂
∂
Φ∂

=Φ∇=

z

y

x
J

 

 
The current is zero in an infinite homogeneous medium 
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The Concept of Homogeneous Half Space 
 

( )
( )
( )∞∈

∞∞−∈
∞∞−∈

,
,
,

az
y
x

                                    

 
In such a configuration, since for the same z all points are identical, there 
is no variation in the flux with x or y  
 

)(),,( zzyx Φ=Φ  
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The Concept of Infinite Homogeneous Slab 

 
 

( )
( )
( )aaz

y
x

,
,
,

−∈
∞∞−∈
∞∞−∈
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Looking at it from one side: 
 
 
 
 
 
 
 
 
 
 
In such a configuration, since for the same z all points are identical, there 
is no variation in the flux with x or y  
 

)(),,( zzyx Φ=Φ  
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Differential Microscopic Scattering Cross Sections 
 
Beam of monoenergetic neutrons 
 

)(v EnI =  

 
 
Scattering rate: 

)(EIR ss σ=  
Equivalently, we can write (using only macroscopic quantities that can 
be measured): 
 

I
RE s

s =)(σ  

[ ]scmnI // 2
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By scattering, neutrons lose energy. 
 
Let )(EdRs ′ be the rate at which neutrons are scattered in energy range  
E', E'+dE' 
 
We have: 
 

ss REdR =′∫
∞

0

)(
 

Definition of the differential scattering microscopic cross section 
 

EId
EdR

EE s
s ′

′
≡′→

)(
)(σ  

Equivalently, we can write: 

EdR
EdRE

EdR
EdR

I
R

R
R

EId
EdREE

s

s
s

s

ss

s

ss
s ′

′
=

′
′

=
′
′

≡′→
)()()()()( σσ
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Scattering Kernel  
 

Ed
EEdP

EdR
EdREEk

s

s

′
=

′
′

=′→
)',()()(  

 
)()( EEkEE ss ′→=′→ σσ  

 
The scattering kernel can be interpreted as the probability density 
function for a neutron of energy E to be scattered such that its final 
energy is between E' and E'+dE'. 
 
The differential and total scattering cross section satisfy: 
 

∫
∞

′′→=
0

)()( EdEEE ss σσ  
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Differential Macroscopic Scattering Cross Sections 
 

)()( EENEE ss ′→=′→Σ σ  
 
or, using the scattering kernel: 
 

)()(
)()()(

EEkE
EEkENEE

s

ss

′→Σ=
=′→=′→Σ σ

 
 
Volumetric reaction rate at which neutrons scatter within energy range 
(E, E+dE)  
 

)()'( EEIEER ss ′→Σ=→  
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Energy-Dependent Neutron Balance Equation 

2005  E. Nichita



Balance Equation for Neutrons with Energy Between E and E+dE 
 

[rate of change of number of neutrons in volume dV with energy 
within range (E, E+dE)] = 
 [rate of production in volume dV of neutrons with energy within 
range (E, E+dE)] +  
[rate of scattering of neutrons in dV into energy range (E, E+dE)] -  
[rate of absorption in dV of neutrons with energy in range (E, 
E+dE)] - 
-[rate of scattering of neutrons in dV outside of energy range (E, 
E+dE)] -  
[rate of leakage out of dV of neutrons with energy within range  
(E, E+dE)] 
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[rate of change of number of neutrons in volume dV with energy 
within range (E, E+dE)] 
 

dEdV
t
EndV

dt
tEndttEn

dt
dEdVtEndEdVdttEnERchange

∂
∂

=
−+

=

=
−+

=

)(),(),(

),(),()(
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[rate of production in volume dV of neutrons with energy within 
range (E, E+dE)] 
 

dEdVEsERp )()( =  
s(E) = number of neutrons produced inside dV with energies between E 
and E+dE, divided by dEdV. 
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[rate of scattering of neutrons in dV into energy range (E, E+dE)] 
 
Rate at which neutrons with energy within )';'( dEEE +  scatter such that 
their energy is within );( dEEE +  
 

dEdVEEdEEEER ss )'(')'()'( →Σ×Φ=→  
 
Rate at which all neutrons scatter such that their energy is 
within );( dEEE +  
 

dEdVEdEEEER ss ⎥
⎦

⎤
⎢
⎣

⎡
′→Σ×Φ=→ ∫

∞

0

)'()'()(
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[rate of absorption in dV of neutrons with energy in range  
(E, E+dE)] 
 

dEdVEEdVEdEEER aaa )()()()()( Σ×Φ=Σ×Φ=  
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[rate of scattering of neutrons in dV outside of energy range (E, 
E+dE)] 
 

dEdVEEdVEdEEER sss )()()()()( Σ×Φ=Σ×Φ=→  
 
Note that: 
 

∫
∞

′′→Σ=Σ
0

)()( EdEEE ss
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[rate of leakage out of dV of neutrons with energy within range  
(E, E+dE)] 
 

dEdVEJELK )()( ⋅∇=  
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Balance Equation for Neutrons with Energy Between E and E+dE 
 

)()()()()()( ELKERERERERER saspchange −→−−→+=  
 

dEdVEJdEdVEEdEdVEE

dEdVEdEEEdEdVEsdEdV
t
En

sa

s

)()()()()(

)'()'()()(

0

⋅∇−Σ×Φ−Σ×Φ−

−⎥
⎦

⎤
⎢
⎣

⎡
′→Σ×Φ+=

∂
∂

∫
∞

 

 
Dividing by dEdV we obtain the energy-dependent neutron balance 
equation (continuity equation): 
 

)()()()()(

)'()'()()(

0

EJEEEE

EdEEEEs
t
En

sa

s

⋅∇−Σ×Φ−Σ×Φ−

−′→Σ×Φ+=
∂

∂
∫
∞
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We can show the dependence on time explicitly: 
 

),()(),()(),(

)'(),'(),(),(

0

tEJEtEEtE

EdEEtEtEs
t

tEn

sa

s

⋅∇−Σ×Φ−Σ×Φ−

−′→Σ×Φ+=
∂

∂
∫
∞

 

 
Definition of energy-dependent flux: 
 

v(E)
)()(v(E))()( EEnEnE Φ

=⇒=Φ
 

 
Substituting the expression for the energy-dependent neutron density, we 
obtain: 

),()(),()(),(

)'(),'(),(),(
)(v

1

0

tEJEtEEtE

EdEEtEtEs
t

tE
E

sa

s

⋅∇−Σ×Φ−Σ×Φ−

−′→Σ×Φ+=
∂

Φ∂
∫
∞
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Energy-Dependent Steady-State Neutron Balance Equation 
 

),()(),()(),(

)'(),'(),(0
0

tEJEtEEtE

EdEEtEtEs

sa

s

⋅∇−Σ×Φ−Σ×Φ−

−′→Σ×Φ+= ∫
∞

 

 
Diffusion Approximation (use Fick's Law) 
 

)()()( EEDEJ Φ∇=  
 

( ))()()(),()(),(

)'(),'(),(0
0

EEDEtEEtE

EdEEtEtEs

sa

s

Φ∇⋅∇+Σ×Φ−Σ×Φ−

−′→Σ×Φ+= ∫
∞
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For position-independent diffusion coefficient: 
 

)()()(),()(),(

)'(),'(),(0

2
0

EEDEtEEtE

EdEEtEtEs

sa

s

Φ∇+Σ×Φ−Σ×Φ−

−′→Σ×Φ+= ∫
∞
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Multigroup Formalism 
 
Approximate treatment of the energy-dependent diffusion equation. 
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Energy Groups 
 
Divide the energy domain ),0( maxE  into intervals called groups 
 

 
 

max0121.....0 EEEEEE GG =<<<<= −  
 
Group neutron density 
 

∫
−

≡
1

)(
g

g

E

E
g dEEnn

 
 

EG EG-1 E0 E1 . . . . . . . . . .  
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(Energy) Group Flux 
 

∫
−

Φ≡Φ
1

)(
g

g

E

E
g dEE

 
 

 
Can depend on parameters such as position and/or time 
 

∫
−

Φ≡Φ
1

),()(
g

g

E

E
g dEErr  

Eg-1 

)(EΦ  

E Eg 
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Group Current 
 

∫
−

≡
1

)(
g

g

E

E
g dEEJJ

 
 
Can depend on parameters such as position and/or time 
 

∫
−

≡
1

),()(
g

g

E

E
g dEErJrJ

 
 

Group Source 
 

∫
−

=
1

)(
g

g

E

E
g dEEss
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Group Reaction Rates 
 
Reaction Rate for a single Nucleus 
 

∫∫
−−

Φ=≡
11

)()()(nucleussingle
g

g

g

g

E

E

E

E
g dEEEdEERR σ  

 
Reaction Rate Density for a Material 
 

∫∫
−−

ΣΦ=≡
11

)()()(
g

g

g

g

E

E

E

E
g dEEEdEERR

 
 
Can depend on parameters such as position and/or time 
 

∫∫
−−

ΣΦ=≡
11

),(),(),()(
g

g

g

g

E

E

E

E
g dEErErdEErRrR
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Group Cross Sections 
 
Microscopic Group Cross Sections  
 

g

g
E

E

E

E
g

R

dEE

dEEE

g

g

g

g

Φ
=

Φ

Φ

≡

∫

∫
−

−

nucleus single

1

1

)(

)()( σ

σ
 

 
Macroscopic Group Cross Sections 
 

g

g
E

E

E

E
g

R

dEE

dEEE

g

g

g

g

Φ
=

Φ

ΣΦ

≡Σ

∫

∫
−

−

1

1

)(

)()(
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Inter-Group Scattering (Transfer) Cross Sections 
 
Microscopic 
 

∫

∫ ∫
−

− −′

′

Φ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′′→Φ

=′→ 1

1 1
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g

g

g

g

g

g

E

E

E

E

E

E
s

gg

dEE

dEEdEEE σ
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Macroscopic 
 

gg

dEE

dEEdEEE

g

g

g

g

g

g

E

E

E

E

E

E
s

gg ′≠

Φ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′′→ΣΦ

=Σ

∫

∫ ∫
−

− −′

′
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1 1
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Intra-Group Scattering Cross Section 
 
Microscopic 
 

∫

∫ ∫
−

− −

Φ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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g
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Macroscopic 
 

∫

∫ ∫
−
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Φ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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Multigroup Neutron balance Equation 
 
[rate of change of number of neutrons in volume dV with energy 
within group g] = 
 [rate of production in volume dV of neutrons with energy within 
group g] +  
[rate of scattering of neutrons in dV into energy group g] -  
[rate of absorption in dV of neutrons with energy in group g] - 
-[rate of scattering of neutrons in dV outside of energy group g] -  
[rate of leakage out of dV of neutrons with energy within group g] 
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Multigroup Neutron balance Equation 
 

dVJdVdVdVdVsdVn
t gg

G

ggg
gsggag

G

ggg
ggsggg ⋅∇−Σ−Σ−Σ+=

∂
∂ ∑∑

≠=
→

≠=
→ φφφ

',1'
'

',1'
''

 
 
 
Dividing by dV we obtain: 
 

gg

G

ggg
gsggag

G

ggg
ggsggg Jsn

t
⋅∇−Σ−Σ−Σ+=

∂
∂ ∑∑

≠=
→

≠=
→ φφφ

',1'
'

',1'
''  
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Multigroup Neutron balance Equation 
 
Multigroup Fick's Law: 
 

ggg DJ φ∇−=  
Multigroup Diffusion Equation 
 

( )ggg

G

ggg
gsggag

G

ggg
ggsggg Dsn

t
φφφφ ∇⋅∇+Σ−Σ−Σ+=

∂
∂ ∑∑

≠=
→

≠=
→

',1'
'

',1'
''  

 
For constant diffusion coefficient: 

ggg

G

ggg
gsggag

G

ggg
ggsggg Dsn

t
φφφφ 2

',1'
'

',1'
'' ∇+Σ−Σ−Σ+=

∂
∂ ∑∑

≠=
→

≠=
→  
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Steady-state (no time dependence) 
 

02

',1'
'

',1'
'' =∇+Σ−Σ−Σ+ ∑∑

≠=
→

≠=
→ ggg

G

ggg
gsggag

G

ggg
ggsgg Ds φφφφ  

 
Finally, changing the order of the terms, we can write: 
 

gg

G

ggg
gsggag

G

ggg
ggsggg sD =Σ+Σ+Σ−∇− ∑∑

≠=
→

≠=
→ φφφφ

',1'
'

',1'
''

2
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A Different Way of Deriving the Multigroup Diffusion Equation 
 
Integrating the energy-dependent diffusion equation over energy  
group g. 

( )gggsggag

G

g
ggsggg Dsn

t
φφφφ ∇⋅∇+Σ−Σ−Σ+=

∂
∂ ∑

=
→

1'
''  

For constant diffusion coefficient: 

gggsggag

G

g
ggsggg Dsn

t
φφφφ 2

1'
'' ∇+Σ−Σ−Σ+=

∂
∂ ∑

=
→  

 
Steady-state (no time dependence) 
 

02

1'
'' =∇+Σ−Σ−Σ+∑

=
→ gggsggag

G

g
ggsgg Ds φφφφ  
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The above can be rearranged to: 
 

ggsggag

G

g
ggsggg sD =Σ−Σ+Σ−∇− ∑

=
→ φφφφ

1'
''

2

 
 

This appears to be different from the diffusion equation we established 
before.  We will prove that it is, in fact, identical. 
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Scattering cross sections satisfy: 
 

sg

G

g
gsg Σ=Σ∑

=
→

1'
'  

 
Substituting the above into the steady-state multigroup diffusion 
equation, one obtains: 
 

gg

G

g
gsggag

G

g
ggsggg sD =Σ+Σ+Σ−∇− ∑∑

=
→

=
→ φφφφ

1'
'

1'
''

2

 
 
Which, considering that the intragroup scattering cancels out, can be 
rewritten: 
 

gg

G

ggg
gsggag

G

ggg
ggsggg sD =Σ+Σ+Σ−∇− ∑∑

≠=
→

≠=
→ φφφφ

',1'
'

',1'
''

2

 
Which is exactly what we had obtained before using directly a group-
balance argument. 2005  E. Nichita



Additionally, if we assume no upscattering, we can write: 
 

gggsg <=Σ → 'for0'  
 
and thus process the multigroup diffusion equation to: 
 

gg

G

gg
gsggag

g

g
ggsggg sD =Σ+Σ+Σ−∇− ∑∑

+=
→

−

=
→ φφφφ

1'
'

1

1'
''

2
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Particular Cases of the Diffusion Equation 
 
 
 

2005  E. Nichita



One-Group Diffusion Equation 
 
The entire energy range is included in just one group 
 
The multigroup diffusion equation 

gg

G

gg
gsggag

g

g
ggsggg sD =Σ+Σ+Σ−∇− ∑∑

+=
→

−

=
→ φφφφ

1'
'

1

1'
'

2

 
 
becomes: 
 

1111
2

1 sD a =Σ+∇− φφ  
 
We can drop the group index: 

sD a =Σ+∇− φφ2  
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Two-Group Diffusion Equation 
 
Start with the multigroup diffusion equation 

gg

G

gg
gsggag

g

g
ggsggg sD =Σ+Σ+Σ−∇− ∑∑

+=
→

−

=
→ φφφφ

1'
'

1

1'
''

2

 
Group 1 (fast): 

1121111
2

1 sD sa =Σ+Σ+∇− → φφφ  
Group 2 (slow, thermal): 

2221212
2

2 sD as =Σ+Σ−∇− → φφφ  

 
Two-group diffusion equations: 

1121111
2

1 sD sa =Σ+Σ+∇− → φφφ  
2221212

2
2 sD as =Σ+Σ−∇− → φφφ  
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Solving the Diffusion Equation for Simple Cases 
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One Group, Infinite Homogeneous Medium, Uniformly 
Distributed Source 

 
srrD a =Σ+∇− )()(2 φφ  

 
Infinite, homogeneous medium 

 
ctr == φφ )(  

 
02 =∇ φ  

 
The equation becomes: 
 

sa =Σ φ  
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Solving for the flux, we obtain: 
 

a

s
Σ

=φ  
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Two Groups, Infinite Homogeneous Medium, Uniformly 
Distributed Source 

 
1121111

2
1 sD sa =Σ+Σ+∇− → φφφ  

2221212
2

2 sD as =Σ+Σ−∇− → φφφ  
 
For an infinite and homogeneous medium with uniformly-
distributed source: 
 

ctr == 11 )( φφ  
ctr == 22 )( φφ  

01
2 =∇ φ  

02
2 =∇ φ  
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The two-group equations become: 
 
 

112111 ssa =Σ+Σ → φφ  
222121 sas =Σ+Σ− → φφ  

 
The first equation can be easily solved to yield: 
 

rsa

ss
Σ

=
Σ+Σ

=
→

1

211

1
1φ  

 
section cross removal  =Σr  
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The second equation can be rewritten as: 
 

121222 φφ →Σ+=Σ sa s  
 

densitydown  slowing121 ==Σ → Ts qφ  
 
Using the expression found for the fast flux, we have: 
 

r
sa

ss
Σ

Σ+=Σ →
1

21222φ  
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The thermal flux is hence: 
 

2

1
212

2
a

r
s

ss

Σ
Σ

Σ+
=

→

φ  
 
If there is no external thermal source ( )02 =s , then the solution 
simplifies to: 
 

2

1
212

ar
s

s
ΣΣ

Σ= →φ  
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One Group Diffusion for an Infinite Planar Source 
Situated in an Infinite Homogeneous Medium 

 

 
 
Equivalent to two half-spaces (left and right) 
 

0for x   0),,(),,(2 ≠=Σ+∇− zyxzyxD aφφ  
 

X 

S (n/cm2/s 

2005  E. Nichita



Because of the symmetry, )(xφφ =  
 
The equation becomes: 
 

0)(
)(
)(

2

2

=Σ+
∂
∂

− x
x
xD aφφ

φ
 

 
Using the diffusion length notation: 
 

0,01
22

2

≠=− x
Ldx

d φφ
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This is a homogeneous second order linear differential 
equation with constant coefficients.  The general solution is 
of the type: 
 

L
x

L
x

CeAex +=
−

)(φ  
 
Because the flux needs to be finite, we have C=0.  Hence: 
 

L
x

Aex
−

=)(φ  
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The current is: 
 

L
x

L
x

e
L
DAAe

dx
dDxJ

−−
=⎟

⎠
⎞⎜

⎝
⎛−=)(

 
 
To find A, we use the boundary condition: 
 

2
)(lim 0

SxJx =+→  
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The initial condition yields: 
 

D
sLAs

L
DAse

L
DAxJ L

222
)(

0
=⇒=⇒==

 
The flux for x>0 is hence:  
 

L
x

e
D

SL −
=

2
φ

 
Analogously, the flux for x<0 is: 

L
x

e
D

SL
2

=φ
 

 

2005  E. Nichita



One Group Diffusion for a Point Source Situated in an 
Infinite Homogeneous Medium 

 
Use spherical coordinates with the source placed at the center 
 

 

r

dr
 

θrd  

ϕθdr sin  
θ  θd  

ϕ ϕd  

Ω== drddrdA 22 sin ϕθθ  

Ω

ϕθθ dddrrdVrd sin23 ==  

r
r

≡Ω  

r

2r
dAd =Ω  

X 

Y

Z
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Because the problem is symmetrical with respect to both θ  
and ϕ  (spherical symmetry) , the flux will only depend on r. 
 

)(rφφ =  
 
Expression of Laplacian in spherical coordinates for a 
function with spherical symmetry, f(r). 
 

⎟
⎠
⎞

⎜
⎝
⎛=∇

dr
dfr

dr
d

r
rf 2

2
2 1)(
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The diffusion equation becomes: 
 

011
2

2
2 =−⎟

⎠
⎞

⎜
⎝
⎛ φφ

Ldr
dr

dr
d

r  
 
This is a homogeneous second order differential equation 
with constant coefficients. 
 
The boundary condition is  
 

( )
π4

)(lim 2
0

SrJrr =→  
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To solve the equation, we make the substitution: 
 

r
wrw =⇔= φφ

 
 
The equation becomes: 
 

011
2

2
2 =−⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

r
w

Lr
w

dr
dr

dr
d

r  
which yields: 
 

01
22

2

=− w
Ldr

wd
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Following a similar treatment as for the plane source, we find: 
 

r
e

D
S L

x−

=
π

φ
4  
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One Group Diffusion for a Bare Slab with an Infinite 
Planar Source Situated in the Middle 

 
 

 
 
The problem is symmetric with respect to the source and also 
has planar symmetry 

)(xφφ =  

X 

S (n/cm2/s 

-a a 

2005  E. Nichita



 
Diffusion equation: 
 

0,01
22

2

≠=− x
Ldx

d φφ
 

 
Will treat the right half. 
 
This is a homogeneous second order linear differential 
equation with constant coefficients.  The general solution is 
of the type: 
 

L
x

L
x

CeAex +=
−

)(φ  
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The left boundary condition is, just as before: 
 
 

2
)(lim 0

SxJx =+→  
yielding: 
 

2
)(

0

SC
L
DA

L
DCe

L
DAe

L
DxJ

x

L
x

L
x

=+−=+−=
=

−
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The right boundary condition is now a vacuum boundary 
condition, that is the flux vanishes at the extrapolated 
boundary. 
 

 
0)~( =aφ  

where 
daa +=~  

X 

S (n/cm2/s 

-(a+d) (a+d) 
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The above yields: 

0)~(
~~

=+=
−

L
a

L
a

CeAeaφ  
 

We obtain A and C by solving the system: 
 

2
SC

L
DA

L
D

=+−
 

0)~(
~~

=+=
−

L
a

L
a

CeAeaφ  
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The final solution is: 
 

L
a

e

ee
D

SLx
L

ax
xL

~2

12
)(

~2

−

+

−
=

−

φ
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Neutron Moderation (two group treatment) 
 
Two-group diffusion 
 

01211
2

1 =Σ+∇− → φφ sD  
0221212

2
2 =Σ+Σ−∇− → φφφ asD  

 
The two equations can be rearranged to: 

01211
2

1 =Σ+∇− → φφ sD  
121222

2
2 φφφ →Σ=Σ+∇− saD  
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We make the following notations: 

lenghtdiffusion   thermal 

areadiffusion   thermal  

age   

2

2

2

21

1

=

==
Σ

==
Σ →

T

T
a

T
s

L

LD

D τ

 

With the new notations, the equations are written: 
 

01
11

2 =+∇− φ
τ

φ
T  

1
2

1
222

2 1 φ
τ

φφ
TT D

D
L

=+∇−  
 
These can be solved for different configurations.  For point 
source the solution is given in the textbook. 
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Nuclear Reactor Theory 
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Preliminaries - Neutron Fluence 
 

Neutron fluence is defined as the time integral of the flux 
 

∫=
2

1

)(
t

t

dttφψ
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Fission Chain Reaction 
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Each fission produces 2-3 more neutrons which can, in 
principle, induce new fissions in avalanche.  This is not 
desirable. 
 
However, not all neutrons resulting from fission induce new 
fissions.  Some undergo gamma capture. 
 
If two few neutrons (less than one per fission) induce new 
fissions the fission reaction dies down.  Not desirable either. 
 
The trick is to have a fission rate that is constant in time.  A 
reactor operating at a constant fission rate is said to be 
critical.  
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Infinite Homogeneous Reactor 
(One-Group Diffusion Approximation) 

 
The steady-state diffusion equation is written: 
 

SD a =Σ+∇− φφ2  
 
The source now consists of fission neutrons: 

φν fS Σ=  
 
So the equation becomes: 

φνφφ faD Σ=Σ+∇− 2
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The flux is constant in space because the medium is infinite 
and homogeneous, so the equation becomes. 
 

φνφ fa Σ=Σ  
 
It is obvious that the above cannot be satisfied, unless  
 

fa Σ=Σ ν  
 
If that is not the case, then the source is artificially divided by 
a factor k, just to balance the equation.   
 

φνφ fa k
Σ=Σ

1
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k is called the multiplication constant (factor).  For an infinite 
medium, it is called the infinite multiplication constant and 
denoted by k∞. 
 
It is obvious that, for the one-group homogeneous reactor 
case: 

a

fk
Σ

Σ
=∞

ν
 

It is also obvious that the value of the flux cannot be 
determined because once the appropriate k is used, any value 
of the flux will satisfy the balance equation. 

φν
ν

φφνφ f

a

f
afa k

Σ

Σ
Σ

=Σ⇒Σ=Σ
∞

11
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Interpretation of k 
 
Since the balance equation is written: 
 

φνφ fa k
Σ=Σ

∞

1
 

 
We have: 
 

φ
φν

a

fk
Σ

Σ
=∞  

 
So k can be interpreted as the ratio of the neutron production 
rate and the neutron loss rate. 
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The name "multiplication factor" is used because k represents 
the ratio between the neutron density for one generation of 
neutrons, divided by the neutron density for the previous 
generation.  This needs some explaining. 
 
Consider a bare infinite homogeneous reactor.  Initially there 
are no neutrons present.   
 
Now, assume some neutrons, with density n0 are introduced 
in the reactor.  Let's call these "generation 0" neutrons.  These 
neutrons will fly around, producing a flux v)()( 00 tnt =φ  which 
will decrease as the neutrons are absorbed, until all neutrons 
are eventually absorbed. 
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The time dependence of the zero-generation neutrons looks 
something like this: 
 

 
 
 

t 

n 
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The flux, has a similar shape 
 

 
 

t 

φ  
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As these zero-generation neutrons are absorbed, some of them 
produce fissions.  We consider the neutrons born out of these 
fissions first generation neutrons.  They are produced at a 
rate: 
 

)(0 tfφνΣ  
 
and are absorbed at a rate 
 

)(1 taφΣ  
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Overall, the number of first-generation neutrons that are 
produced per unit volume is: 
 

0
0

0
0

01 )()( ψνφνφν fff dttdttn Σ=Σ=Σ= ∫∫
∞∞

 
 
The total number of absorptions of first-generation neutrons 
is: 
 

1
0

1
0

1 )()( ψφφ aaa dttdtt Σ=Σ=Σ ∫∫
∞∞
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Since, in the end, all first-generation neutrons get absorbed, 
we have: 
 

01 ψνψ fa Σ=Σ  
 
which yields: 
 

001 ψψ
ν

ψ ∞=
Σ

Σ
= k

a

f

 
The first-generation neutrons, in turn, produce second 
generation neutrons.  Their number is: 
 

1012 nkkn ff ∞∞ =Σ=Σ= ψνψν  
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The process continues: 
 

23 nkn ∞=  
 
and so on. 
 
The number of neutrons in each generation is equal to the 
number in the previous generation multiplied by k∞.  Hence 
the name multiplication factor. 
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Infinite Homogeneous Reactor 
(Two-Group Diffusion Approximation) 

 
Diffusion equations: 
 

2211121111
2

1 φνφνφφφ ffsaD Σ+Σ=Σ+Σ+∇− →  
0221212

2
2 =Σ+Σ−∇− → φφφ asD  

 
Because the reactor is infinite and the flux (both fast and 
thermal) is constant in space, we have: 
 

221112111 φνφνφφ ffsa Σ+Σ=Σ+Σ →  
022121 =Σ+Σ− → φφ as  
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Attempt to solve the system: 
 
Group 2 equation yields: 
 

1
2

21
2 φφ

a

s

Σ
Σ

= →

 
 
Substituting into the group 1 equation, we obtain: 
 

1
2

21
21112111 φνφνφφ

a

s
ffsa Σ
Σ

Σ+Σ=Σ+Σ →
→  

 

2005  E. Nichita



Obviously, the above is only satisfied if: 
 

2

21
21211

a

s
ffsa Σ
Σ

Σ+Σ=Σ+Σ →
→ νν  

 
which may not always be the case.  This means that unless the 
above is satisfied, we cannot have a steady-state solution to 
our diffusion equations.  
 
To force the system of equations to have a (steady-state) 
solution, we resort to the same trick as before: use a "fudge 
factor" 1/k that multiplies fission productions. 
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Thus, our equations become: 

( )221112111
1 φνφνφφ ffsa k

Σ+Σ=Σ+Σ
∞

→  
022121 =Σ+Σ− → φφ as  

 

And, by substituting 1
2

21
2 φφ

a

s

Σ
Σ

= →

 into the fast-group 
equation, we obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ
Σ

Σ+Σ=Σ+Σ →
→ 1

2

21
21112111

1 φνφνφφ
a

s
ffsa k  
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Dividing by the flux, we obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ
Σ

Σ+Σ=Σ+Σ →

∞
→

2

21
21211

1

a

s
ffsa k

νν
 

 
We can now solve for k∞ . 
 

211

2

21
21

→

→

∞ Σ+Σ
Σ
Σ

Σ+Σ
=

sa

a

s
ff

k
νν
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Choosing k∞ to have the above value ensures the system 

admits a solution.  That solution is 1
2

21
2 φφ

a

s

Σ
Σ

= →

: 
We cannot find the fast flux explicitly. 
 
A close look at the system of equations  
 

( )221112111
1 φνφνφφ ffsa k

Σ+Σ=Σ+Σ
∞

→  
022121 =Σ+Σ− → φφ as  

 
reveals that it is a homogeneous system of linear equations 
which defines an eigenvalue/eigenvector problem.  The 
eigenvalue is 1/k∞ and, as expected, the eigenvector can only 
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be determined up to a multiplicative constant which, in our 
solution, is 1φ . 
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k∞ can, in the two-group case be interpreted in three different 
ways: 
 
1. the eigenvalue that allows the system of equations to have 
a solution 

2. the ratio of productions over losses  
3. the factor by which the number of neutrons gets multiplied 
from one generation to the next 
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Criticality 
 
K<1  - Subcritical  
• Number of neutrons decreases form one generation to the next 
• Rate of neutron production smaller than rate of neutron loss 

 
K=1  - Critical  
• Number of neutrons stays constant form one generation to the 

next 
• Rate of neutron production equals rate of neutron loss 

 
K<1  - Supercritical  
• Number of neutrons increases form one generation to the next 
• Rate of neutron production larger than rate of neutron loss 
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The Four-Factor Formula 
 
Let us look at the group 1 equation in the two-group 
approximation. 
 

( )221112111
1 φνφνφφ ffsa k

Σ+Σ=Σ+Σ
∞

→  
 
Solving for the multiplication factor, we obtain: 
 

12111

2211

φφ
φνφν

→
∞ Σ+Σ

Σ+Σ
=

sa

ffk  
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The above can be processed as follows: 
 

12111

22

22

2211

22

22

12111

2211

12111

2211

φφ
φν

φν
φνφν

φν
φν

φφ
φνφν

φφ
φνφν

→

→→
∞

Σ+Σ

Σ

Σ

Σ+Σ
=

=
Σ

Σ

Σ+Σ

Σ+Σ
=

Σ+Σ

Σ+Σ
=

sa

f

f

ff

f

f

sa

ff

sa

ffk

 

 
By making the notation: 
 

22

2211

φν
φνφν

ε
f

ff

Σ

Σ+Σ
=
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We obtain: 
 

12111

22

φφ
φν

ε
→

∞ Σ+Σ

Σ
=

sa

fk  
 
We can continue the processing: 
 

22

22

12111

22

22

22

12111

22

φ
φν

φφ
φε

φ
φ

φφ
φν

ε
a

f

sa

a

a

a

sa

fk
Σ

Σ

Σ+Σ
Σ

=
Σ
Σ

Σ+Σ

Σ
=

→→
∞  

 
Denoting: 
 

12111

22

φφ
φ

→Σ+Σ
Σ

=
sa

ap  
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We have: 
 

22

22

φ
φν

ε
a

fpk
Σ

Σ
=∞  

 
We can, moreover divide the thermal absorption cross section 
into the absorption cross section for fuel, and the one for 
moderator. 
 

moderator
2

fuel
22 aaa Σ+Σ=Σ  

 
With this, we can rewrite the formula for the multiplication 
factor as follows: 
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2
fuel

2

22

22

2
fuel

2

2
fuel

2

2
fuel

2

22

22

φ
φν

φ
φ

ε
φ
φ

φ
φν

ε
a

f

a

a

a

a

a

f ppk
Σ

Σ

Σ
Σ

=
Σ
Σ

Σ

Σ
=∞  

 
 
Denoting: 
 

22

2
fuel

2

φ
φ

a

af
Σ
Σ

=  
and 

 

2
fuel

2

22

φ
φν

η
a

f

Σ

Σ
=  
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We obtain: 

ηεpfk =∞  
 
This is known as the four factor formula. 
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The names and interpretation of the factors are as follows: 
 
Fast fission factor 

22

2211

φν
φνφν

ε
f

ff

Σ

Σ+Σ
=

 
 
Resonance escape probability 

12111

22

φφ
φ

→Σ+Σ
Σ

=
sa

ap  
 
Thermal utilization factor 

22

2
fuel

2

φ
φ

a

af
Σ
Σ

=  
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η (number of neutrons produced per neutron absorbed in fuel) 

2
fuel

2

22

φ
φν

η
a

f

Σ

Σ
=  
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One-Group Treatment of Finite Reactors 
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Diffusion Equation 
 

0v1
f

2 =Σ+Σ−∇ φφφ
k

D a  
 

011
f

2 =⎟
⎠
⎞

⎜
⎝
⎛ Σ+Σ−+∇ φνφ

kD a  
 
Notation: 
 

⎟
⎠
⎞

⎜
⎝
⎛ Σ+Σ−= f

2 11 ν
kD

B a  
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Equation can be rewritten: 
 

022 =+∇ φφ B  
 
B depends on k.  It turns out that B cannot take just any value.  
It has to be equal to the value imposed by the geometry, 
called the geometrical buckling.   
 

22
gBB =  
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Then: 
 

2
f

11
ga B

kD
=⎟

⎠
⎞

⎜
⎝
⎛ Σ+Σ− ν

 
 
offers an equation for k. 
 

ag DB
k

Σ+
Σ

= 2
fν

 
 
Things will become clearer by showing an example. 
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Infinite Slab Reactor 
 
 

 
0)

2

~
( =
aφ  

where 
daa 2~ +=  

 

X 
-(a/2+d) (a/2+d) 
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We then have: 

02
2

2

=+ φB
dx
d

 
 
Boundary conditions: 
 

0
2

~

2

~
=⎟

⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ aa φφ  

 
Symmetry of problem implies: 
 

0
0

=
=xdx

dφ
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General Solution: 
 

BxCBxAx sincos)( +=φ  
 

[ ]

00

cossin)(

0

=⇒==

=+−=
=

CCB

BxCBBxAB
dx

xd

x

φ

 

 
Hence: 
 

BxAx cos)( =φ  
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Vacuum B.C. 
 

0
2

~
cos

2

~
=⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ aBAaφ  

 
Implies: 
 

0
2

~
cos =⎟

⎠
⎞

⎜
⎝
⎛ aB

 
 
Yields: 
 

a
nBn ~
π

=
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Fundamental solution 
 

⎟
⎠
⎞

⎜
⎝
⎛==

a
xAxBAx ~coscos)( 1
πφ

 
 
B1 is the geometrical buckling 
 
A cannot be determined from the diffusion equation.  It can 
be determined from the condition on the reactor power. 
 
 

∫
−

Σ=
2

2

)(
a

a
fR dxxEP φ
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π

π
⎟
⎠
⎞

⎜
⎝
⎛Σ

= a
aAEa

P
fR ~2

sin~2

 
 
 

⎟
⎠
⎞

⎜
⎝
⎛

Σ
=

a
x

aE
Px

fR

ππφ cos
2

)(  
 

a
ag D

a
DB

k
Σ+⎟

⎠
⎞

⎜
⎝
⎛

Σ
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Spherical Reactor 
 
We have, in sequence: 
 

01 22
2 =+ φφ B

dr
dr

dr
d

r  
 
 

r
BrC

r
BrA cossin

+=φ  
Because the flux has to be finite at r=0, we have: 

r
BrA sin

=φ
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~sin
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π
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Infinite Cylinder 
 
We have in sequence: 
 

01 2 =+ φφ B
dr
dr

dr
d

r  
 

01 2
2

2

=++ φφφ B
dr
d

rdr
d

 
 

01
2

2
2

2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++ φφφ

r
mB

dr
d

rdr
d
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Solution: Bessel functions of first and second kind: 
 

)()( 00 BrCYBrAJ +=φ  
 
Y0 infinite at origin (fig. 6.3) 
 

)(0 BrAJ=φ  
 
B.C. 
 

0)()~( 0 == BrAJRφ  
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22
12

1 ~
405.2

~ ⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

RR
xB  

 

⎟
⎠
⎞

⎜
⎝
⎛=

R
rAJ ~

405.2
0φ
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Finite Cylinder 
 
 

01 2
2

2

2

2

=+
∂
∂

+
∂
∂

+
∂

φφφφ B
zrrr

d
 

 
B.C.  
 

0),~( =zRφ  

0)
2

~
,( =
Hrφ
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Separation of Variables 
 
 

)()(),( zZrRzr =φ  
 

2
2

2111 B
z
Z

Zr
Rr

r
d

rR
−=

∂
∂

+
∂
∂

∂  
 

211
rB

r
Rr

r
d

rR
−=

∂
∂

∂  
 

2
2

21
zB

z
Z

Z
−=

∂
∂
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Solution: 
 

H
z

R
rAJzr ~cos~

405.2),( 0
πφ ⎟

⎠
⎞

⎜
⎝
⎛=  
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Reactor Kinetics
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Time-Dependent Phenomena

• Short Time Phenomena (ms, s)
– accidents
– experiments
– startup

• Medium Time Phenomena (hrs, days)
– fission product poisoning

• Xe
• Sm

• Long Time Phenomena (months, years)
– fuel burnup with consequent change in composition
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Time-Dependent Phenomena

• No feedback (approximation)
– Changes in flux level do not induce changes 

in the absorption or production properties of 
the reactor.

• Feedback 
– Changes in flux level do induce changes in 

the absorption or production properties of the 
reactor.
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Point Kinetics Equations

part 1 
all neutrons emitted in a fission 

are assumed prompt
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One-energy-group diffusion equation

• time-dependent diffusion (results from 
neutron balance)

• If sources are exactly equal to sinks, then 
the static equation results (no time 
dependence)

),(),(),(),( 2 trtrDtr
t

trn
af ΦΣ−Φ∇+ΦΣ=

∂
∂ ν

)()()()()()(0 22 rrrDrrDr faaf ΦΣ=ΦΣ+Φ∇−⇔ΦΣ−Φ∇+ΦΣ= νν
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One-energy-group diffusion 
equation

• To keep the static form of the diffusion 
equation even when the sources do not 
exactly equal the sinks, we introduced K, 
(multiplication factor) to artificially adjust 
the sources.

• Now, we will not use k any more, but 
rather concentrate on the time-dependent 
equation

)(1)()()()()(10 22 r
k

rrDrrDr
k faaf ΦΣ=ΦΣ+Φ∇−⇔ΦΣ−Φ∇+ΦΣ= νν

2005  E.Nichita



Time-dependent one-energy-group 
diffusion equation

• But let’s remember:

• so:

),(),(),(),( 2 trtrDtr
t

trn
af ΦΣ−Φ∇+ΦΣ=

∂
∂ ν

v
v Φ

=⇔=Φ nn

tt
n

∂
Φ∂

=
∂
∂

v
1
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Time-dependence of the neutron 
flux and neutron density

• We can now write the time-dependent 
diffusion: in two separate ways
– concentrate on the flux

– concentrate on the neutron density

),(),(),(),(1 2 trtrDtr
t

tr
v af ΦΣ−Φ∇+ΦΣ=

∂
Φ∂ ν

),(v),(v),(v),( 2 trntrnDtrn
t

trn
af Σ−∇+Σ=

∂
∂ ν
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Some assumptions

• Static one-energy-group diffusion equation 
for a critical reactor 

• It can be rewritten as:

• Where

)()()(2 rrrD fa ΦΣ=ΦΣ+Φ∇− ν

0)()( 22 =Φ+Φ∇ rBr

2B
D

af =
Σ−Σν
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Some assumptions

• Assume that the equation satisfied by the 
time-independent flux in a critical reactor is 
also satisfied, at any time t, by the time-
dependent flux in a non-critical reactor. 

• This is equivalent to assuming that the 
spatial shape of the flux does not change 
with time

0)()( 22 =Φ+Φ∇ rBr
),(),(0),(),( 2222 trBtrtrBtr Φ−=Φ∇⇔=Φ+Φ∇
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Back to the time-dependence of the 
neutron flux and neutron density

• We can now write the time-dependent 
diffusion
– for the flux

– for the neutron density

),(),(),(),(
v
1 2 trtrDBtr

t
tr

af ΦΣ−Φ−ΦΣ=
∂

Φ∂ ν

),(v),(v),(v),( 2 trntrnDBtrn
t

trn
af Σ−−Σ=

∂
∂ ν
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Time-dependence of the neutron 
density

• where

( )v2
af DB Σ−−Σ= να

( ) ),(),(),(vvv),( 2 trn
t

trntrnDB
t

trn
af αν =

∂
∂

⇔Σ−−Σ=
∂

∂
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Time-dependence of the neutron 
density

• Integrating over the entire reactor we 
obtain:

),(),( trn
t

trn α=
∂

∂

∫∫ =
∂

∂

VV

rdtrnrd
t

trn 33 ),(),( α

∫∫ =
VV

rdtrnrdtrn
dt
d 33 ),(),( α
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Time-dependence of the total 
neutron population

• Total neutron population

• Equation governing the time behaviour of 
the total neutron population

• solution

∫=
V

rdtrntn 3),()(

)()()()( tntntntn
dt
d αα =⇔=

tentn α
0)( =
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Time dependence of the neutron 
flux

• The results are analogous to those for the 
neutron density.

),(),(),(),(
v
1 2 trtrDBtr

t
tr

af ΦΣ−Φ−ΦΣ=
∂

Φ∂ ν

( ) ),(),(
v
1 2 trDB

t
tr

af ΦΣ−−Σ=
∂

Φ∂ ν

( ) ),(),(),(v),( 2 tr
t

trtrDB
t

tr
af Φ=

∂
Φ∂

⇔ΦΣ−−Σ=
∂

Φ∂ αν
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Time dependence of the neutron 
flux

• Integrating over the volume of the reactor:

• where:

∫∫ Φ=
∂

Φ∂

VV

rdtrrd
t

tr 33 ),(),( α

∫∫ Φ=Φ
VV

rdtrrdtr
dt
d 33 ),(),( α

∫Φ=
V

rdtrt 3),()(φ̂

)(ˆ)(ˆ)(ˆ)(ˆ tttt
dt
d φαφφαφ =⇔=
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Observations

• The total neutron population and the 
volume integrated flux obey the same 
equation.

• The relation between the volume 
integrated flux and the total neutron 
population is the same as that between 
the flux and neutron density. 

v),(),( trntr =Φ

v)()(ˆ),(v),( 33 tntrdtrnrdtr
VV

=⇔=Φ ∫∫ φ
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Point Kinetics Equation without 
Delayed Neutrons

• Just a special way of arranging the 
coefficients.

• Usually written for the neutron population, 
but similar equation can be written for the 
volume-integrated flux.
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Point Kinetics Equation without 
Delayed Neutrons

• Multiplication constant

• Reactivity

• we can write:
( )

ρνν
νν

ν
ν

ν
ν

ννα

v11vv

vv

2

2
2

f
eff

f
f

a

f

f
f

f

af
faf

k
DB

DB
DB

Σ=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−Σ=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Σ
Σ+

−
Σ

Σ
Σ

=
Σ

Σ−−Σ
Σ=Σ−−Σ=

2DB
k

a

f
eff

+Σ

Σ
=

ν

kk
k 111

−=
−

=ρ
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Point Kinetics Equation without 
Delayed Neutrons

• Notation:

• It follows that:

• The equation for the neutron population can 
then be written

= Point kinetics eq. w/o dn

vfΣ
=Λ
ν

1

Λ
=
ρα

)()( tn
dt

tdn
Λ

=
ρ
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Point Kinetics Equation without 
Delayed Neutrons

• A similar equation can be written for the 
volume-integrated flux.

• Alternative processing:

)(ˆ)(ˆ t
dt

td φρφ
Λ

=

( ) ( )

( ) ( ) ( )1vv

vv

2
2

2

2
2

2

2
22

−Σ+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ+
Σ+

−
Σ+

Σ
Σ+

=
Σ+

Σ−−Σ
Σ+=Σ−−Σ=

kDB
DB
DB

DB
DB

DB
DB

DBDB

a
a

a

a

f
a

a

af
aaf

ν

ν
να
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Point Kinetics Equation without 
Delayed Neutrons

• New notation

• With the new notation the point kinetics 
eq. can be written (a less common form):

• and, for the flux:

( )v
1

2
aDB Σ+

=

)(1)( tnk
dt

tdn −
=

)(ˆ1)(ˆ tk
dt

td φφ −
=
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Point kinetics equation(s) 

• Nomenclature – called point-kinetics 
because the reactor is reduced to a point –
no accounting for spatial or energy 
dependence.

• Can be derived starting from a more 
general, space and energy dependent, 
flux.
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Names and interpretations of 
symbols

• Neutron generation time

• Interpretations
– Average time between two neutron births in 

successive generations
– Time it would take to generate the current number of 

neutrons at the current generation rate.
– Average “age” of neutrons in the reactor. (Note that 

this is a time, and not the Fermi age).

fΣ
=Λ

νv
1
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Names and interpretations of 
symbols

• Neutron life time

• For an infinite reactor:
• Interpretations

– average time between the birth and death of a 
neutron

– Time necessary to lose all the neutrons in the 
reactor at the current loss rate.

– Average life expectancy for neutrons in the 
reactor. 

2

1
v
1

DBa +Σ
=

aΣ
=∞

1
v
1
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Point Kinetics Equations

part 2 
Accounting for Delayed Neutrons
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Point Kinetics with Only One 
Delayed Neutron Group  

• We make the same assumptions about the 
buckling staying constant as in the case with no 
delayed neutrons.

• We write directly the equation for the entire 
reactor (volume-integrated quantities) 

• Some neutrons are emitted directly from fission
• Some neutrons come from the decay of 

precursors.
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Neutron Balance Equation for the 
Entire Reactor

• Sources
– Prompt neutrons from fission

– Delayed neutrons from the decay of 
precursors

φβνφννφννν ˆ)1(ˆ)(ˆ)()( 33
ffdfp

V
fp

V
fp rdrrdr Σ−=Σ−=Σ=ΦΣ=ΦΣ ∫∫

reactor) in the precursors ofnumber  totalĈ(        ˆ =Cλ
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Neutron Balance Equation for the 
Entire Reactor

• Sinks
– Absorption

– Leakage

φ̂)()( 33
a

V
a

V
a rdrrdr Σ=ΦΣ=ΦΣ ∫∫

φ̂)()( 23232 DBrdrDBrdrDB
VV

=Φ=Φ ∫∫
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Precursor Balance Equation for the 
Entire Reactor

• Source

• Sink

φνβφννν ˆˆ)()( 33
ffd

V
fd

V
fd rdrrdr Σ=Σ=ΦΣ=ΦΣ ∫∫

Ĉλ
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Neutron and Precursor balance 
Equations

• Neutron Balance

• Precursor Balance

• We now have a system of two (coupled) 
differential equations.

)(ˆˆ)(ˆ
tC

dt
tCd

fd λφν −Σ=

CDB
dt

tdn
afp

ˆˆˆˆ)( 2 λφφφν +−Σ−Σ=
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Point Kinetics Equations with One 
Group of Delayed Neutrons

• Rearrange the first equation in a few steps

( )[ ] CDB
dt

tdn
af

ˆˆ1)( 2 λφβν +−Σ−Σ−=

( )[ ]
C

DB
dt

tdn

f

af
f

ˆˆ1)( 2

λφ
ν

βν
ν +

Σ

−Σ−Σ−
Σ=

C
DB

v
dt

tdn

f

f

f

af
f

ˆ
v

ˆ)( 2

λφ
ν
βν

ν
ν

ν +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Σ
Σ

−
Σ
−Σ−Σ

Σ=

C
v

DBv
dt

tdn

f

a
f

ˆˆ
1)( 2

λφβ
ν

ν +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

Σ
+Σ

−Σ=
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Point Kinetics Equations with One 
Group of Delayed Neutrons

• Rearrange the second equation

)(ˆˆ)(ˆ
tC

dt
tCd

fd λφν −Σ=

)(ˆˆ)(ˆ
tC

dt
tCd

f λφνβ −Σ=

)(ˆ
v

ˆ
v)(ˆ

tC
dt

tCd
f λφνβ −Σ=
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Point Kinetics Equations with One 
Group of Delayed Neutrons

• Make the same notations and 
observations as for the case with no 
delayed neutrons 

vfΣ
=Λ
ν

1

2DB
k

a

f

+Σ

Σ
=

ν

f

a DB
k Σ

+Σ
−=−=

ν
ρ

2

111

v
)(ˆ)(v)()(ˆ ttntnt φφ =⇔=
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Point Kinetics Equations with One 
Group of Delayed Neutrons

• Neutron Balance Equation

• Precursor Balance Equation

CDB
dt

tdn

f

a
f

ˆ
v

ˆ
1v)( 2

λφβ
ν

ν +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

Σ
+Σ

−Σ=

Ctn
dt

tdn ˆ)()( λβρ
+

Λ
−

=

)(ˆ
v

ˆ
v)(ˆ

tC
dt

tCd
f λφνβ −Σ=

)(ˆ)()(ˆ
tCtn

dt
tCd λβ

−
Λ

=
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Point Kinetics Equations with One 
Group of Delayed Neutrons

• Final form of kinetics equations using the 
neutron population

Ctn
dt

tdn ˆ)()( λβρ
+

Λ
−

=

)(ˆ)()(ˆ
tCtn

dt
tCd λβ

−
Λ

=
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Point Kinetics Equations with One 
Group of Delayed Neutrons

• Final form of the point kinetics equations 
using the volume-integrated flux

v
)(ˆ)(v)()(ˆ ttntnt φφ =⇔=

Ct
dt

tdCt
dt

td

f

ˆ1)(ˆ)(ˆˆv)(ˆ)(ˆ λ
ν

φβρφλφβρφ
ΣΛ

+
Λ
−

=⇔+
Λ
−

=

)(ˆ)(ˆ)(ˆ
)(ˆ)(ˆ

v
1)(ˆ

tCt
dt

tCdtCt
dt

tCd
f λφβνλφβ

−Σ=⇔−
Λ

=
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Point Kinetics Equations with Six 
Groups of Delayed Neutrons

• Equations using the neutron population
(7 coupled differential equations)

∑
=

+
Λ
−

=
6

1

ˆ)()(
k

kkCtn
dt

tdn λβρ

6...1),(ˆ)()(ˆ
=−

Λ
= ktCtn

dt
tCd

kk
kk λβ

2005  E.Nichita



Point Kinetics Equations with Six 
Groups of Delayed Neutrons

• Equations using the volume-integrated flux
(7 coupled differential equations)

∑∑
== ΣΛ

+
Λ
−

=⇔+
Λ
−

=
6

1

6

1

ˆ1)(ˆ)(ˆˆv)(ˆ)(ˆ

k
kk

fk
kk Ct

dt
tdCt

dt
td λ

ν
φβρφλφβρφ

)(ˆ)(ˆ)(ˆ
)(ˆ)(ˆ

v
1)(ˆ

tCt
dt

tCdtCt
dt

tCd
kkfk

k
kk

kk λφνβλφβ
−Σ=⇔−

Λ
=
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Inhour Equation 
 
Start with the point kinetics equations 
 

∑
=

+
Λ
−

=
6

1

ˆ)()(
k

kkCtn
dt

tdn λβρ
 

 

6...1),(ˆ)()(ˆ
=−

Λ
= ktCtn

dt
tCd

kk
kk λ

β
 

 
This is a system of seven coupled differential equations with 
constant coefficients.   
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Solutions of the form  
 
 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

t

t

t

ec

ec
ne

ω

ω

ω

6

1

 

 

2005  E.Nichita



Substituting the above form we obtain: 
 

∑
=

+
Λ
−

=
6

1k
kkcnn λβρω

 

 

6...1, =−
Λ

= kcnc kkk λβω
 

 
Solving for ck in the precursor equations, we obtain: 
 

( ) 6...1, =
+Λ

= knc
k

k
k λω

β
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Substituting into the neutron population equation we obtain: 
 

( )∑
= +Λ

+
Λ
−

=
6

1k k

k
k nnn

λω
βλβρω

 

 
which, after division by n and multiplication by Λ , becomes: 
 

( )∑
= +

+−=Λ
6

1k k

k
k λω

β
λβρω  

 
Solving formally for ρ , we obtain: 
 

( )∑
= +

−+Λ=
6

1k k

k
k λω

βλβωρ  
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We can solve graphically for ω  by plotting the RHS and 
intersecting it with a horizontal line at y=ρ. 
 

 
Reactor Period 

max

1
ω

=T  
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Perturbation Theory
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Perturbation Theory

• Consider a reactor with the following 
parameters (This is called the “reference”, 
or “unperturbed” reactor): 

• K can be calculated by solving:

)(
)(

)(

0

0

0

r
r
rD

f

a

Σ
Σ
ν

)()(1)()()()( 0
0

000
2

0 rr
k

rrrrD fa ΦΣ=ΦΣ+Φ∇− ν
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Perturbation Theory

• Consider now a different reactor, with the 
same shape, but different absorption and 
fission cross sections (This is called the 
“perturbed” reactor).

• K can be calculated by solving:
)()()(

)()()(

0

0

rrr
rrr

fff

aaa

Σ+Σ=Σ
Σ+Σ=Σ
δ
δ

)(1)()(2
0 r

k
rrD fa ΦΣ=ΦΣ+Φ∇− ν
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Perturbation Theory
• Assuming that

• we can find k by a simple formula, without 
having to solve the diffusion equation 
again

• NOTE:
– is called the perturbation in the 

absorption cross section
– is called the perturbation in the fission 

cross section

aΣδ

fΣδ

small  is  )(

small  is  )(

r

r

f

a

Σ

Σ

δ

δ
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Perturbation Theory

• Perturbation Formula for finding k (no proof):

• The formula is good even if the reactor is not 
homogeneous.

∫

∫∫

ΦΣ

ΦΣ−ΦΣ
≅−

V
f

V
f

V
a

dVrr

dVrr
k

dVrr

kk
)()(

)()(1)()(
11

2
00

2
0

0

2
0

0 ν

νδδ
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Perturbation Theory
• Q: What does “small” mean for a 

perturbation?
• A:

• A perturbation can be small in two ways:
– a)

– b)  The perturbation only affects a small part 
of the reactor.

∫∫

∫∫

Σ<<Σ

Σ<<Σ

V
f

V
f

V
a

V
a

dVrdVr

dVrdVr
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0

0
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δ

δ
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Reactivity Induced by a 
Perturbation in a Critical Reactor

• Reactor initially critical
• Introduce a perturbation
• The new k can be found using the 

perturbation formula:

10 =k

∫

∫∫
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ΦΣ−ΦΣ
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V
f
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f
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Reactivity Induced by a 
Perturbation in a Critical Reactor

• Since
• we can write: 

10 =k

∫

∫∫

ΦΣ

ΦΣ−ΦΣ
≅−

V
f

V
f

V
a

dVrr

dVrrdVrr

k
)()(

)()()()(
11

2
00

2
0

2
0

ν

νδδ

∫

∫∫

ΦΣ

ΦΣ−ΦΣ
≅−

V
f

V
a

V
f

dVrr

dVrrdVrr

k
)()(

)()()()(
11

2
00

2
0

2
0

ν

δνδ

2005  E.Nichita



Reactivity Induced by a 
Perturbation in a Critical Reactor

• Remember the definition of the static 
reactivity:

• Hence, we can write the perturbation 
formula for the reactivity: 

k
11−=ρ

∫

∫∫

ΦΣ

ΦΣ−ΦΣ
≅

V
f

V
a

V
f

dVrr

dVrrdVrr

)()(

)()()()(

2
00

2
0

2
0

ν

δνδ
ρ
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Generalized Definition of Reactivity

• Diffusion equation

• It represents the neutron balance

• So k can be interpreted as the ratio 
Productions/Losses

)(1)()(2
0 r

k
rrD fa ΦΣ=ΦΣ+Φ∇− ν

sProduction1Losses
k

=

Losses
sProduction

=k
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Generalized Definition of Reactivity

• Reactivity

• The generalized definition can be also 
applied to non-static (time-dependent) 
situations

sProduction
sProduction

sProduction
1111 Losses

Losses
k

−
=−=−=ρ

2005  E.Nichita



Steps for Setting up the (Quasi-)Exact Point Kinetics Equations 
(Case of One Energy Group) 

 
1. Find out the neutronic parameters (diffusion coefficient and macroscopic cross 

sections) of the critical (unperturbed) reactor.  
2. Determine the flux 0Φ for the critical (unperturbed) reactor (Usually by solving the 

diffusion equation or referring to the results from a previous calculation). 
 

3. Calculate the point kinetics parameters (except reactivity) using their formulas of 
definition (shown below). 

 

 
fv Σ

=Λ
ν
1

 

 

 
f

fdk
k Σ

Σ
=

ν
ν

β
 

 

 ( )2

1
DBv a +Σ

=
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4. Calculate the reactivity using the perturbation formula: 

 

 ∫

∫∫

ΦΣ

ΦΣ−ΦΣ
≅

V
f

V
a

V
f

dVrr

dVrrdVrr

)()(

)()()()(

2
00

2
0

2
0

ν

δδν
ρ

 

 
5. Write the point-kinetics equations: 

 

 
∑
=

+
Λ
−

=
6

1
)(ˆ)()(

k
kk tCtn

dt
tdn λβρ

 
 

 
∑
=

−
Λ

=
6

1
)(ˆ)()(ˆ

k
kk

kk tCtn
dt

tCd λβ
 

 
6. Solve the point-kinetics equations. 
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Measuring the Reactivity Worth of a Control Rod by the Source 
Multiplication Method 

 
• The method is applicable for a subcritical reactor with an external neutron 

source. 
• We need to have a second rod whose reactivity worth we already know. 

 
Steps 
 

1. Measure the flux at any reactor position without any of the rods inserted and 
record the value. 

2. Insert the rod of known reactivity worth 1ρ∆ . 
3. Measure the flux at the same reactor position as in step 1 and record the 

value. 
4. Remove the rod of known reactivity. 
5. Insert the rod of unknown reactivity 2ρ∆ . 
6. Measure the flux at the same reactor position as in step 1 and record the 

value. 
7. Calculate the unknown reactivity worth 2ρ∆ . 
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Calculations 
 
For any point in a subcritical reactor with an external neutron source we have: 
 

Sector ρ
Λ

−=Φ det  
 
Note:  we have shown that this is true for the flux at the center of the reactor and 
we will accept without proof that it is true for the flux at any position in the 
reactor. 
 
For the reactor without any control rod we can write: 
 

Sector
0

0
det ρ

Λ
−=Φ              (1) 

 
or 
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00
det

1 ρ
Λ

−=
Φ

S

ector
             (2) 

 
 
After we insert the rod of known reactivity, the reactivity becomes 
 

101 ρρρ ∆+=              (3) 
 
The flux equation becomes 
 

( )101
det

1 ρρ ∆+
Λ

−=
Φ

S

ector
           (4) 
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Dividing equation (4) by equation (2) we obtain: 
 

0

10
1
det

0
det

ρ
ρρ ∆+

=
Φ
Φ

ector

ector
            (5) 

 

We can now solve for 0ρ  
 

11
det

0
det

1
0

−
Φ
Φ

∆
=

ector

ector

ρρ
             (6) 

 
After we remove the rod of known worth and insert the rod of unknown worth, 
we have: 
 

( )202
det

1 ρρ ∆+
Λ

−=
Φ

S

ector
           (7) 

 
Dividing now equation (7) by equation (2) we obtain 
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0

20
2
det

0
det

ρ
ρρ ∆+

=
Φ
Φ

ector

ector
            (8) 

 
We can now solve for 2ρ∆  in (8) 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Φ
Φ

=∆ 12
det

0
det

02
ector

ectorρρ            (9) 

 

And substituting the expression for 0ρ  that we found in equation (6) we obtain: 
 

1

1
1

1
det

0
det

2
det

0
det

12
det

0
det

02

−
Φ
Φ

−
Φ
Φ

∆=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Φ
Φ

=∆

ector

ector

ector

ector

ector

ector ρρρ
       (10) 
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So the formula for finding the reactivity worth for our rod is: 

1

1

1
det

0
det

2
det

0
det

12

−
Φ
Φ

−
Φ
Φ

∆=∆

ector

ector

ector

ector

ρρ
            (11) 
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Example 
 
A subcritical cylindrical reactor has radius 3m and height 6m.  A flux detector is 
placed at r=1m in the midplane of the reactor, and a neutron source of unknown 
strength is placed in a position diametrically opposed to the detector.  The 
detector reads initially 1000 units.  A control rod worth 1 mk is then inserted 
into the reactor and the detector reading drops to 500 units.  The rod is then 
removed and another rod of unknown worth is inserted.  The detector now reads 
250 units.  What is the reactivity worth of the new rod? 
 
Answer 
 
Applying eq. (11) we have: 
 

003.0
1
3001.0

12
14001.0

1
500

1000

1
250

1000

001.0
1

1

1
det

0
det

2
det

0
det

12 =×=
−
−

×=
−

−
×=

−
Φ
Φ

−
Φ
Φ

∆=∆

ector

ector

ector

ector

ρρ
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Measuring the Reactivity Worth of a Control Rod by the Null Reactivity 
Method 

 
Method 1 Steps 
 

1. Insert a calibrated rod fully (up to the maximum depth, dmax)into the reactor. 
(A calibrated rod is a rod for which we know what the reactivity worth is as 

a function of the depth of insertion )(dcρ∆  ) 
2. Make the reactor critical by modifying other parameters, possibly extracting 

some poison. 
3. Insert the rod to be measured 
4. Make the reactor critical again by partially extracting the calibrated rod, up 

to depth d. 

5. Calculate the reactivity worth of the second rod, xρ∆ . 
 
Calculations 
 
Consider the reactor with the calibrated control rod extracted, but with all other 
parameters having the same value as when the calibrated rod was inserted. 
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Its reactivity would be 0ρ  (unknown) 
 
After the insertion of the calibrated rod, we know that the reactivity is zero. 
 

0)( max0 =∆+= dcc ρρρ  
 
After we insert the second rod and withdraw partially the calibrated rod, the 
reactor is still critical. 
 

0)(0 =∆+∆+= xxcx d ρρρρ  
 
Subtracting these two equations we obtain: 
 

0)()( max =∆+∆−∆ xcxc dd ρρρ  
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We can now solve for xρ∆  
 

)()( max xccx dd ρρρ ∆−∆=∆  
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Example 
 
The reactivity worth of a calibrated control rod as a function of its depth of 
insertion is given in the graph below.  The reactor is made critical with the 
calibrated rod fully inserted.  A second control rod is inserted, and the reactor is 
again made critical by withdrawing the calibrated control rod up to a depth of 

1.5 m.  What is the reactivity worth xρ∆  of the second control rod? 
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Solution 
 
Consider the reactor with the calibrated control rod extracted, but with all other 
parameters having the same value as when the calibrated rod was inserted. 
 
Its reactivity would be 0ρ  (unknown) 
 
After the insertion of the calibrated rod, we know that the reactivity is zero. 
 

0)300(0 =∆+= cmcc ρρρ  
 
After we insert the second rod and withdraw partially the calibrated rod, the 
reactor is still critical. 
 

0)150(0 =∆+∆+= xcx cm ρρρρ  
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Subtracting these two equations we obtain: 
 

0)300()150( =∆+∆−∆ xcc cmcm ρρρ  
 

We can now solve for xρ∆  
 

)150()300( cmcm ccx ρρρ ∆−∆=∆  
 
Substituting the numerical values, we have: 
 

mkx 5)5(10 −=−−−=∆ρ  
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Method 2 Steps 
 

1. Obtain the reactivity calibration of a liquid poison (e.g. B) as a function of 
its concentration )(Xpoisonρ∆  

2. Add some poison while maintaining the reactor critical (possibly by 
removing some other reactivity devices).  

3. Mark the poison concentration Xc. 
4. Insert the rod to be measured. 
5. Make the reactor critical again by removing some poison. 
6. mark the new poison concentration. 

7. Calculate the reactivity worth of the second rod, xρ∆ . 
 
Calculations 
 
The poison reactivity worth is proportional to the poison concentration: 
 

XXpoison αρ =∆ )(  
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Knowing the reactivity calibration of poison means knowing α , which is 
usually measured in mk/ppm. 
 
Consider the reactor in step 2 but without any poison.  Its reactivity would be 

0ρ  (unknown) 
 
Now consider the (critical) reactor at step 2. 
 

0)(0 =∆+= cpoisonc Xρρρ  
 
 
After we insert the rod and remove part of the poison the reactor is still critical. 
 

0)(0 =∆+∆+= xpoisonx X ρρρρ  
 
Subtracting these two equations we obtain: 
 

0)()( =∆+∆−∆ xcpoisonpoison XX ρρρ  
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We can now solve for the reactivity worth of the rod. 
 

( )XXXX cpoisoncpoisonx −=∆−∆=∆ αρρρ )()(  
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Example 
 
The reactivity worth of Boron in a CANDU reactor is 7mk/ppm.  The reactor is 
made critical by the addition of Boron.  A control rod is then inserted and the 
reactor is maintained critical by removing 1.5 ppm of Boron.  What is the 
reactivity worth of the rod? 
 
Solution 
 
By applying the formula we derived, we have: 
 

( ) ( ) )(5.105.17 mkXX cx −=−×=−=∆ αρ  
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Appendix: Elements of Relativity 
 
Introduction 
 
Consider two Cartesian frames of reference, S and S’, and assume S’ is moving with respect to S with a velocity u, directed along the 
X axis, and oriented in the positive direction of the axis.  Also assume that each frame of reference is provided with its own clock.  
The two clocks are of identical make, and they are set so that the origin of time (t=0) in both frames of reference coincides with the 
moment when the origin of S and that of S’ coincide. 
 

 
 

Figure 1 
 

Consider now an event (say an electric bulb being turned on) that happens in S at position (x,y,z) and time t.  We want to determine 
the coordinates (x’, y’, z’) of that event in frame S’, as well as the time t’ indicated by the clock in S’ when the said event happens. 
 

S S’ 

z 

y 

x 

z’ 

y’ 

x’ 

u  
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So we are concerned with the following transformation: 
 

),,,(),,,( tzyxtzyx ′′′′→  
 
Galileo’s transformation formulas 
 
Our initial “common sense” tendency would be to say that t=t’.  That is to say that, if the clocks are of identical make, and since both 
were set to start when the origins of S and S’ coincided, they will continue to show the same time forever.  If we assume this to be 
true, then we have the situation depicted in Figure 2.   
 

 
 

Figure 2 
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We can then easily infer: 
 

utxx'
zz
yy
tt

−=
=
=
=

 x)along isu  (because '
 x)along isu  (because '

'

 

 
These are known as Galileo’s transformation formulas.  They include a very profound assumption: that time transforms independently 
of space.  In other words, if we have two events happening in S at the same time t and different positions ),,( 111 zyx  and ),,( 222 zyx , 
both of them will happen at time tt =' in S’, at different coordinates,   

),,( 111 zyx ′′′  and ),,( 222 zyx ′′′ , given by: 
 
 

utx'x
zz

yy

−=
=′

=′

11

11

11

  

 
and  
 

utx'x
zz

yy

−=
=′

=′

22

22

22
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If we accept Galileo’s formulas, we can easily write a formula for transforming velocities.  All we have to keep in mind is that: 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
≡

dt
dz

dt
dy

dt
dx

v
v
v

v

z

y

x

 

And that: 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′
′

′
′

′
′

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′
′
′

≡′

td
zd

td
yd

td
xd

v
v
v

v

z

y

x

 

 
 
With that in mind, we can begin to write the components of the velocity in S’.   
 
For the x direction, we obtain: 
 

( ) ( ) uvuv
td
dtu

dt
dx

td
dtutx

dt
d

td
dt

dt
xd

td
xdv xxx −=×−=

′
⎟
⎠
⎞

⎜
⎝
⎛ −=

′
−=

′
′

=
′
′

=′ 1  
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For the y direction, we follow the same steps, but the result is even simpler: 
 

yyyy vv
td
dtv

td
dt

dt
dy

td
dt

dt
yd

td
ydv =×=

′
=

′
=

′
′

=
′
′

=′ 1  

 
And similarly for the z component. 
 

zzzz vv
td
dtv

td
dt

dt
dz

td
dt

dt
zd

td
zdv =×=

′
=

′
=

′
′

=
′
′

=′ 1  

 
 
We can now write the formula for the velocity in S’ as: 
 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′
′
′

≡′

z

y

x

z

y

x

v
v
uv

v
v
v

v  

 
This is the expected, “common sense”, result. 
 
The trouble with the above velocity-addition formula is that it has been shown by experiment to fail for velocities close to the speed of 
light in vacuum.  Michelson and Morley performed a famous experiment that showed that if v=c (c = speed of light in vacuum), then 
the classical formula for adding velocities fails.   
 
In Michelson and Morley’s experiment, the moving frame of reference was taken to be the Earth, which was known to move around 
the Sun at a speed of approximately 30 Km/s.  The “fixed” frame of reference was taken to be the “ether”, an all-encompassing “fluid” 
that was presumed to fill all space and constitute the medium through which light propagates.  If the classical law of velocity addition 
was true, then the speed of light measured in the direction of the Earth’s motion (chosen as the x axis) would have had to be c-u, while 
the speed of light in a direction perpendicular to the Earth’s velocity would have had to remain equal to c.  Michelson and Morley’s 
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experiment showed that, in fact, the speed of light in vacuum was the same in both directions (parallel, as well as perpendicular to the 
Earth’s motion).  There were two immediate implications of this experiment, and they resonated in the scientific world: 
 

1. There exists no “ether” as the medium through which light propagates. 
2. The classical law of velocity addition does not apply for velocities close to the speed of light. 

 
Albert Einstein then devised the Theory of Relativity by postulating what was now obvious from Michelson and Morley’s experiment: 
The speed of light in vacuum is the same, and equal to smc /103 8×= , in any inertial frame of reference.  Additionally, Einstein 
postulated that the laws of physics are the same in any inertial frame of reference.  The two hypotheses are known as the Postulates of 
the theory of relativity: 
 

1. The laws of physics are the same in all inertial reference frames. 
2. The speed of light in a vacuum has the same value, c=3x108 m/s in all inertial reference frames (independent of the observer’s 

motion). 
 
If the above two principles are applied consistently, then alternative transformation relations are obtained for the coordinates of an 
event E, when moving from inertial frame S to a second inertial frame S’.  (Remember that two inertial frames of reference have to 
move uniformly (i.e. constant velocity) relative to each other.)  These are known as the Lorentz transformations, because they were 
first formulated by Lorenz (before Einstein came up with the theory of relativity) in the context of the electromagnetic theory of light.  
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The Lorenz Transformations 
 
In trying to come up with the transformations that will satisfy the two postulates of relativity, we will look for as simple 
transformations as we can.  The ultimate test of their validity will have to be experiment.  And so far experiments have proven the 
Lorenz transformation to be right. 
 
We will hence make two simplifying assumptions: 
 

1. The transformation of y and z coordinates (the ones perpendicular to the motion) transform the same way as in the classical 
approach, that is y’=y, and z’=z. 

2. The transformation of x and t are linear, that is of the form: 
 

taxat

taxax

2221

1211

' +=

+=′
 

 
We can already note an important difference between the proposed transformations and those of Galileo: The value of t’ is not 
independent of position any more.  That is, if two events happen at the same time t in S, but at different positions x1 and x2 , they will 
happen at different times t’1 and t’2 in S’.  So two events that are simultaneous in one frame of reference, may or may not be 
simultaneous in the other frame of reference.  This is a major difference from our classical understanding of how the world works.  
But let us try to determine the coefficients of the transformation.  To do that, we will imagine a “thought experiment. 
 
Let us first consider a light detector placed at coordinates )0,,0( d  in the “stationary” frame S.  At time 0=′= tt , the exact time when 
the origins of the two frames of reference coincide, a bulb is lit at the common origin, for a fraction of a second.  The light then 
propagates to the detector.  Let us consider the two events: 

1. The emission of the light pulse 
2. The arrival of the light pulse at the detector. 

 
We will now try to write the coordinates of each event, including time, in both frames of reference, using Figure 3 as a guide for 
emission, and Figure 4 as a guide for reception. 
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Figure 3 
 
 
For the emission, according to Figure 3: 
 
In S 
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In S’: 
 

0
0
0
0
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=′
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=′

t
z
y
x

 

 
 
For the reception we use Figure 4.: 
 

 
 

Figure 4 
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In S 
 

c
dt

z
dy

x

=

=
=
=

0

0

 

 
In S’: 
 

?
0

'

=′
=′

==′
−=′

t
z

dyy
utx

 

 
To determine t’, we need to consider the fact that the speed of light (in a vacuum) needs to be perceived to be the same in both frames 
of reference.  In S, the distance traveled by the light is d .  In S’, the distance traveled by the light is:  
 

( )22 tud ′+  
 
Since the speed of light is the same in both frames of reference, it means that: 
 
In S:   
 

dct =  
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In S’  
 

( )22 tudtc ′+=′  
 
Substituting the first of the two relations in the second, we obtain: 
 

( ) ( )22 tucttc ′+=′  
 
which yields subsequently: 
 

( ) ( ) ( )222 tucttc ′+=′  
 
then: 
 

( ) ( ) ( )222 cttutc =′−′  
 

222222 tctutc =′−′  
 

( ) 22222 tctuc =′−  
 

( )
2

2

2
2

22

2
2

1

1 t
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Now, considering our transformation equations for the experiment we have just described, we have: 
 

tataat

tataax

222221

121211

0'

0

=+×=

=+×=′
 

 
 
It then follows from the second equation that: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

2

222

1

1

c
u

a  

 
We now consider the first transformation equation, and the fact that tux ′−=′ , which follows directly from the fact that just as S’ 
moves with u with respect to S, so S moves with –u with respect to S’.  We also keep in mind the relation we just established between 
t ant t’.  We then substitute the expression for t’ in the first transformation equation and equal it to tux ′−=′ : 
 

t

c
u

ututax

⎟⎟
⎠
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It follows immediately that: 
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We have thus found two of the four coefficients we were after. 
 
Now, consider the movement of the origin of S’, as viewed from S.  Since it moves with velocity u, its position at time t is  
 

utx =  
 
At the same time, its coordinate in its own frame of reference S’, is always zero 0=′x . 
 
Applying the transformation formula for x, we obtain for the origin of S’: 
 
 

u
aa

tauta
taxax

12
11
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+=
+=′=

 

 

Given that we have already determined a12 to be 

⎟⎟
⎠

⎞
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ua , we can now find a11 as: 
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So: 
 

⎟⎟
⎠

⎞
⎜⎜
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⎛
−
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2
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1

1

c
u

a  

 
There is now only one more coefficient left to determine: a21.  To find it, we consider a pulse of light that is emitted from the common 
origin at t=t’=0, along the x axis, in the positive direction, and consider its position in both frames of reference at time t. 
 
In S: 
 

ctx =  
 
In S’: 
 

tcx ′=′  
 
We now substitute the known coefficients of the transformation from S to S’, that is: 
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So now we can write: 
 

t

c
u

uct
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u

tc

⎟⎟
⎠
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⎝

⎛
−
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t
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=
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⎠

⎞
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⎝
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⎞
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+

2

2

2

2

2
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1
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We can now solve for a21. 
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We now write the complete Lorentz transformations: 
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u

x
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u

x

t
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u

x
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2
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Oftentimes, the Lorentz transformations are rearranged by factoring out 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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2

1

1
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u

 and rearranging the time equation, to: 
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There are a couple of notations that are usually employed: 
 

2

2

1

1

c
u

u
u

−

≡

≡

γ

β

 

 
With these notations, the Lorentz transformations can be rewritten as: 
 

( )

zz
yy

utxx

x
c

tt

=′
=′

−=′

⎟
⎠
⎞

⎜
⎝
⎛ −=′

γ

βγ 1
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Relativistic effects on time and distance 
 
 
Time dilation 
 
Consider two events , E1 and E2, that occur at times t1 and t2 respectively, in S, in the same place (x,y,z).  (Such a time interval 
measured between events occurring at the same place is called proper time).  Then, their corresponding times in S’ will be: 
 

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=′ x
c
ut

c
u

t 21

2

21

1

1  

 

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=′ x
c
ut

c
u

t 22

2

22

1

1  

 
The time elapsed in S is 12 ttt −=∆ , while the time elapsed, as measured in S’ is: 
 

( ) t
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u
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c
u

x
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ut
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u

x
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u
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=⎟
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⎞

⎜
⎝
⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
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⎠
⎞

⎜
⎝
⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=′−′=′∆

2

212

2

221

2
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2

212

1

1

1

1

1

1

1

1  

 
So, in S’ the time interval appears longer.  This means that the proper time (measured in a frame of reference where events occur in 
the same place) is always the shortest. 
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Length contraction  
 
The length of an object measured in a frame of reference where the object is at rest is called proper length. 
 
Consider a spaceship moving with speed u from planet A to planet B, separated by distance L.  Consider the two events: the departure, 
and the arrival.  In the ship’s frame of reference, the two occur in the same place, so the time of travel in the ship’s frame of reference 
is the proper time of travel, and equals t∆ .  On the other hand, the proper length L is measured in a frame of reference where the 
planets A and B are at rest.  Such a frame of reference moves with –u with respect to the ship.  The time of travel measured in this 
frame of reference will be tt ∆=′∆ γ .  So, for the planets’ frame of reference we can write: 
 

tuL ∆= γ  
 

And for the ship’s frame of reference we can write: 
 

tuLship ∆=  
 
It follows by dividing the two equations, that: 
 

LLship γ
1

=  

 
As 1>γ , this means that the length in the ship’s frame of reference is contracted compared to the proper length. 
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Relativistic momentum and mass 
 
The classical definition of the momentum of a particle is: 
 

vmp 0=  
 
where m0 is the mass of the particle. 
 
If the principles of relativity are applied rigorously, it turns out that vm0  is not conserved.  It turns out (we will not give the proof) that 
the quantity that is conserved is 
  

vm

c
v

p 0

2

2

1

1

−

=  

 
This is the relativistic expression for the momentum of a particle. 
 
We can interpret the above as still being the product between “a” mass m and velocity v  provided we define the mass of a moving 
particle as: 
 

0

2

2

1

1 m

c
v

m

−

=  

 
Where m is called the relativistic mass, and m0 is called the rest mass, and corresponds to the mass of the particle as measured in a 
frame of reference where the particle is at rest. 
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The relativistic relation between momentum and force is the same as the classical one: 
 

dt
pdF =  

 

However, 
dt
dvmF ≠  because the relativistic mass is not a constant. 

 
 
 
 
Relativistic energy 
 
Consider a particle moving on a straight line from x=a to x=b,  under the influence of a force F, and assume the particle is initially at 
rest.  Just like in classical mechanics, the kinetic energy imparted to a particle starting from rest equals the work of the force acting on 
it: 
 

∫∫∫∫∫∫ ======
b

a

b

a

b

a

b

a

b

a

b

a

vdv
dv
dpvdt

dt
dv

dv
dpvdt

dt
dpdt

dt
dx

dt
dpdx

dt
dpFdxKE  

 
Substituting the expression for the relativistic momentum, we obtain: 
 

vdvvm

c
vdv

dvdv
dv
dpKE

b

a

b

a

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

== ∫∫ 0

2

2

1

1  
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The above needs some processing, which we do below: 
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Further processing yields: 
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∫

 

 
The above can be rewritten more elegantly as: 
 

2
0

2 cmmcKE −=  
 
Where m is the relativistic mass, and m0 is the rest mass.  The term 2

0cm  is called the rest energy. 
 
Rearranging the terms, we can write: 
 

22
0 mccmKE =+  

 
The term 2mc  is therefore the sum between the rest energy and the kinetic energy and is called total energy and denoted by E.  We can 
therefore write: 
 

2mcE =  
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which is the famous relativistic energy formula that shows the equivalence between mass and energy.   
 
The interpretation of the equivalence between mass and energy is that we should, on one hand, be able to create energy from matter, 
and, on the other hand, be able to create matter from energy.  Both situations have been found to occur in reality.  In particular, the 
total energy can be liberated in reactions of annihilation, where a particle and an antiparticle collide, the most common such reaction 
being that between an electron and a positron.  A positron is a particle with mass equal to that of an electron, but with positive charge.  
The reverse reaction is called pair production.  When a photon (a particle of light) with sufficient energy is decelerated very fast 
(usually by collision with a heavy particle), an electron-positron pair can be created. 
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