

C			E.											2	2	2					9	4	2
	٨	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
	A D						256	200	252	227	300 227	294	294	200	227	252	200	256					
						317	270	222	203	207	227 188	100	100	227 188	207	203	222	270	317				
ì				[304	258	270	198	177	171	169	173	173	169	171	177	198	270	258	304			
i	F			316	257	220	195	179	163	160	160	164	164	160	160	163	178	195	220	257	316		
i	F			265	222	197	180	169	158	173	174	177	177	174	173	158	169	180	197	222	265		
(G		293	236	201	186	174	174	170	172	173	173	173	173	172	170	174	174	186	201	235	286	
1	Η		258	213	187	178	170	172	170	171	172	172	172	172	171	170	172	169	178	187	212	252	
	J	319	239	198	178	173	177	173	184	185	187	187	187	186	185	184	173	177	172	177	197	233	311
I	K	298	224	188	171	169	175	172	185	187	189	192	192	189	187	184	172	175	169	170	187	218	290
	L	286	217	183	166	163	170	170	184	187	191	196	196	191	187	184	170	170	162	165	182	210	278
ſ	M	286	216	181	164	160	167	168	183	186	191	196	196	190	186	182	168	167	159	163	180	210	278
1	Ν	299	223	185	166	160	166	167	181	185	188	192	192	188	185	181	167	165	159	165	184	216	291
(С	315	237	195	172	163	167	167	180	183	185	186	186	185	183	179	166	167	163	172	194	230	306
1	Ρ		259	211	184	173	165	168	167	170	170	170	170	170	169	167	168	165	173	184	211	252	
(Q		294	237	203	188	175	174	169	170	170	170	170	170	170	169	173	174	187	203	237	287	
	R			274	232	208	188	173	165	173	172	173	173	172	173	165	172	188	208	231	273		
	S			339	275	237	207	184	172	167	166	169	169	166	167	172	184	207	237	274	338	ł	
	1				336	281	238	208	191	182	179	183	183	179	182	191	208	237	281	336			
ļ	U					339	282	239	213	199	193	195	195	193	199	213	239	281	339				
,	V						350	283	241	221	209	206	206	209	221	241	283	350					
V	/V		290 211 200 200 211 290																				
					Boundaries Of Radial Zones																		
				Boundary Of Inner Burnup Region																			
																	,			1-			

Typical Refuelling Frequency (Dwell-Time) Distribution in FPD – from a CANDU 6 Time-Average Calculation

Neutron Balance in Core

- It is instructive to look at a typical neutron balance in the CANDU-6 equilibrium core. This is displayed in the next Figure.
- > 45% of fission neutrons originate from fissions in plutonium: contributes ~ half the fission energy produced in a CANDU reactor. (Actually, in fuel near the exit burnup, plutonium contributes about 3/4of the fission energy.)
- Fast fissions account for 56 fission neutrons out of 1,000.
- Total neutron leakage is 29 neutrons lost per 1000 born, a 29-mk loss (6 mk from fast leakage, 23 mk from thermal leakage).
- Resonance absorption in ²³⁸U represents a loss of almost 90 mk.
- Parasitic absorption in non-fuel components of the lattice represents a 63-mk loss.

Radial Flattening of Power Distribution

- The 3-d flux distribution depends on reactor size and geometry and on irradiation distribution.
- Fuel with a high irradiation has low reactivity, and depresses flux in its vicinity. Conversely, flux is relatively high where fuel has low irradiation.
- Radial flux and power flattening can be achieved by differential fuelling, i.e. taking the fuel to a higher burnup in inner core than in outer core (cf. previous Figure of multi-region model).
- This is done by judicious adjustment of the relative refuelling rates in different core regions.
- In this way the flux and power in the outer region can be increased, with greater number of channels with power close to the maximum.
- A higher total reactor power can be obtained (for a given number of fuel channels) without exceeding the limit on individual channel power. This reduces the capital cost of the reactor per installed kW.

Equilibrium (Time-Average) Core

- A consequence of the on-power refuelling in CANDU is that the equilibrium core contains fuel at a range of burnups, from 0 to some average exit-burnup value.
- The average in-core irradiation is fairly constant over time, at about half the exit value.
- The long-term global flux and power distributions in the equilibrium core can be considered as a constant, "time-average", shape, with local "refuelling ripples" due to the refuelling of individual channels.
- These ripples are due to the various instantaneous values of fuel burnup in the different channels, which are the result on any given day of the specific sequence of channels refuelled in the previous days, weeks and months.

On-Going Reactor Operation with Channel Refuellings

- After the initial period following first reactor start-up, on-power refuelling is the primary means of maintaining a CANDU reactor critical.
- A number of channels are refuelled every day, on the average.
- Replacing irradiated fuel with fresh fuel has immediate consequences on the local power distribution and on the subsequent period of operation of the reactor.

Channel-Power Cycle

- When a channel is refuelled, its local reactivity is high, and its power will be several percent higher than its time-average power.
- The fresh fuel in the channel then goes through its plutonium peak as it picks up irradiation. The local reactivity increases for ~40-50 FPD, and the power of the channel increases further. The higher local reactivity promotes a power increase in neighbouring channels.
- Following the plutonium peak, the reactivity of the refuelled channel decreases, and its power drops slowly. About half-way through the dwell time, the power of the channel may be close to the time-average value.
- The reactivity of the channel and its power continue to drop. The channel becomes a net "sink" or absorber of neutrons, and eventually the channel must be refuelled.
- At this time the power of the channel may be 10% or more below its timeaverage power. When the channel is refuelled, its power may jump by 15 to 20% or even more.

• The power of each channel therefore goes through an "oscillation" about its time-average value during every cycle. It goes up on refuelling and until its plutonium peak, and then decreases steadily until the next refuelling.^{*P*₈9}

Channel-Power Cycle and Refuellings

- The cycle length is not exactly equal to the dwell time, because channels are not refuelled in a rigorously defined sequence, but are selected for refuelling based on instantaneous, daily information about the core power and irradiation distributions.
- In addition, the CANDU fuelling engineer has flexibility in deciding how the core should be managed, and in fact can decide to modify the global power distribution by changing the refuelling frequency of various channels.
- As individual channels are refuelled, the specific sequence results in localized "ripples" in the 3-d power distribution in the core.
- Also, the instantaneous peak channel and bundle powers vary somewhat, and move about in the core.

Selecting Channels for Refuelling

- A main function of the fuel engineer is to establish a list of channels to be refuelled during the following few days of operation.
- To achieve this, the current status of the reactor core is determined from computer simulations of reactor operation, the on-line flux mapping system, the ROP and RRS in-core detectors, and zonecontrol-compartment water fills.
- The computer simulations of reactor operation provide the instantaneous 3-dimensional flux, power and burnup distributions.
- Normally, channel selection will begin with eliminating channels which are poor candidates for refuelling, e.g.:
 - -channels with high power, high power peaking factor, or low burnup, or channels which have been refuelled recently, or their neighbours.

Selecting Channels for Refuelling

- Good combinations of channels for refuelling in the few days to follow will typically contain:
 - -channels last refuelled approximately one dwell time prior
 - -channels with high current exit burnup
 - -channels with low power, relative to their time-average power
 - -channels in (relatively) low-power zones
 - -channels which promote axial, radial and azimuthal symmetry and a power distribution close to the reference power shape
 - -channels which provide sufficient distance to one another and to recently refuelled channels to avoid hot spots
 - -channels which will result in acceptable values for the individual zonecontroller fills (20%-70% range), and
 - -channels which provide the required reactivity to leave the average zone fill in the desired operational range: 40-60%.

Initial Fuel Load

- In the initial core, all fuel is fresh: no differential burnup to assist in flattening the power distribution.
- The power of the central core region would be unacceptably high without flattening the radial power distribution were provided.
- Depleted fuel is used to reduce channel powers in central core region.
- In the CANDU-6 initial fuel load, 2 depleted-fuel bundles (0.52 atom % ²³⁵U) are placed in each of the central 80 fuel channels (see next Figure).
- The bundles are located in positions 8 and 9 (from the channel refuelling end).
- In these axial positions, the depleted-fuel bundles are removed from the core in the first refuelling visit of each of these channels.

Channels with Depleted Fuel in Initial Core of CANDU 6

Pg 14

Transient to Onset of Refuelling

- Even with some depleted fuel in core, the initial core has a net excess reactivity: ~16 mk at full power on FPD 0.
- The reactivity then varies with time as shown in the next Figure.
- All the fuel goes through its plutonium peak at about the same time, the excess reactivity initially increases, to ~23 mk around FPD 40-50.
- The excess reactivity is compensated by boron in the moderator: ~2 ppm on FPD 0, rising to ~3 ppm at the plutonium peak.
- Following the plutonium peak, boron is removed (by ion exchange) as the excess reactivity drops gradually to zero at about FPD 120.
- Refuelling starts about 10-20 FPD before the excess reactivity reaches 0, i.e. around FPD 100, because the refuelling rate would be too great if one waited until the last possible moment to start.
- The rate of refuelling rapidly approaches equilibrium value (~16 bundles per FPD for the CANDU 6).

Excess Core Reactivity in Initial Period of Reactor Operation

Fuelling-Machine Unavailability

- If refuelling were to stop, core reactivity would continuously decrease, at ~0.4 mk/FPD in the CANDU 6.
- First action of RRS to maintain criticality: lower zone-controller water fills from operating range (~50%). To 0%, this would give ~3.5 mk, or ~7-8 extra days of operation.
- Operator would ensure any moderator poison is removed.
- Continued lack of refuelling would lead to withdrawal of adjuster rods in their normal sequence - permits operation to continue for several weeks.
- However, as adjuster rods are withdrawn, reactor power must be gradually reduced because of radially "peaked" power distribution forces power derating to remain in compliance with licensed maximum channel and bundle powers (7.3 MW and 935 kW).
- Amount of derating increases with number of adjusters withdrawn.

Reactor Physicist's Summary

- Reactor physics has both design and operations aspects.
- Design component can be summarized as calculating reactivity, flux and power for assumed core configurations, time-average shape and perturbations.
- Operations component is responsibility of the site fuelling engineer or reactor physicist. It involves core monitoring, core-follow calculations, selection of channels for refuelling, maximization of burnup, and determination of the CPPF to calibrate the ROP detectors.
- The job of the design or site reactor physicist is always interesting and stimulating; it never gets boring.