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CANDU Coolant-Void Reactivity

+

> CANDU has positive void reactivity: when
coolant Is lost, a positive reactivity develops and
power tends to increase; this Is one of the best-
known facts (and criticisms) about CANDU

> Why Is It positive?
> Reasons can be traced to pressure-tube design of

CANDU, and effects of changes in neutron
spectrum (energy distribution)
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CANDU Basic Lattice Cell (not to scale)

Fri ey
Coalant S
Cieks

Antulus

Frazl Elgmants
4
Pressuns Tubs

Calandrie Tulng

Macleratar

)05 November




CANDU Coolant-Void Reactivity

i First, remember some important facts:

> Neutrons emerging from fission are fast — typical
energy ~1 MeV

> The probability of inducing fission in fissile nuclides Is
much higher at thermal energies (~ 0.025 eV)

> To improve the number of induced fissions, a
moderator is used to slow down fission neutrons to
thermal energies

Resonances loom between fast and thermal energies [in
range ~ 1 eVV-100 keV]; very high peaks

Most resonances [e.g., U-238] are absorption
resonances
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Capture or Fission Cross Section
,L vs. Energy (Schematic View)
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CANDU Coolant-Void Reactivity

+

> To maximize resonance escape, fuel is lumped
Into channels separated by volumes of
moderator, to allow fission neutrons to escape
and be slowed to below resonance energies

away from the fuel
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Fission Neutrons Slowed in Moderator Region
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CANDU Coolant-Void Reactivity

+

> Some resonances are fission resonances & increase
neutron production [e.g., Pu-239 at 0.3 eV]

Some background facts (cont’d):
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CANDU Coolant-Void Reactivity

+

> CANDU void reactivity Is the sum total of
several spectral (energy-specific) differential
reactivity effects between the cooled
configuration and the voided configuration of
the lattice.

> Let us consider events which happen to
neutrons before they leave the channel where
they are born and after they re-enter a channel
from the moderator region

cont’d
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CANDU Coolant-Void Reactivity

i Before Escape from a Channel

> Some fission neutrons, before escaping the channel
where they are born, are normally slowed by coolant
Into the resonance energy region and are absorbed.
> Now Imagine the coolant is lost. Without coolant, the
following will happen:
> 1) Fewer fast neutrons will be slowed into the
resonance region, therefore there will be more
opportunities for fast neutrons to induce fission
(..more production), and
~ 2) More fast neutrons will escape resonance capture
and reach the moderator (.. less absorption)
~ Both phenomena increase reactivity cont’d
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CANDU Coolant-Void Reactivity

i After Re-Entering a Channel
> Some thermalized neutrons entering a channel
from the moderator are scattered to higher
energies; they may suffer resonance capture by
hot coolant.
> Now Imagine the coolant is lost. Without coolant,
scattering to higher energies does not occur, and

Mmore neutrons escape resonance capture.
~ This resonance escape gives rise to a positive
reactivity component from U-238, but
~ To0 a negative reactivity component from Pu-239 (on
account of the fission resonance at 0.3 eV)
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CANDU Coolant-Void Reactivity

+

Summary of Void-Reactivity Components

> Positive from increased fast fission

> Positive from increased resonance escape at high
end of energy spectrum (on way out of channel)

> Positive from increased U-resonance escape at
low end of energy spectrum (on way into channel)

> Negative from increased U-resonance escape at
low end of energy spectrum (on way into channel)

> Overall result: the net coolant-void reactivity Is
positive, but decreases with irradiation (burnup).
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CANDU Coolant-Void Reactivity

+

Note:
> This analysis is for the standard CANDU
reactors.
> It cannot be generalized: For other lattices
(other dimensions, other materials) the
differential effects may be, and are often,
quite different.
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Large LOCA (LLOCA)

> LOCA 1s the break of a large pipe [see next
Figure]

> It Is the accident which presents the greatest
challenge to CANDU shutdown systems in
terms of the rate of positive reactivity insertion.
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Examples of Break Locations Giving Rise to a Large
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Large LOCA

+

S Reactivity from full-core voiding:
> ~15-18 milli-k for fresh fuel
> Reduces to ~10-12 milli-k for equilibrium fuel

> In Bruce, reactivity insertion is ~6 milli-k in the first
second after break

> It is typically ~4-5 milli-k in other CANDUSs with two-
loop design

> Reactivity change on this time scale leads to fast
neutronic transient

> Power pulse ensues, shutdown system must be actuated
In fraction of 1 s to quickly terminate transient.
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Large LOCA

i LLOCA must be analyzed as a kinetics
problem

> The time-dependent diffusion equation, with
terms for the delayed-neutron source, must be
solved

> This equation is linked to time-dependent
equations for the delayed-neutron precursors

> In the early days, point Kinetics was used

> In modern analysis, space-time kinetics iIs used
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Large LOCA

oupled Neutronics-Thermalhydraulics Analysis

> A multi-channel thermalhydraulics Is set up, to give the
voliding rate in various channels (high-power inner
region vs. peripheral region, elevation of channel In
core, different thermalhydraulics loops and passes)

> The voiding rate in the various groups Is calculated

> Then the power transient pulse in the various channels
Is calculated with the Kinetics code

> See typical figures in following slides
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NOTE; Numbers In boxes Indicate

the channel group number

Example of Thermalhydraulic Channel Grouping for
a LLOCA Calculation
Broken loop channels (Loop 2) ——-1—— fntact loop chiannels (Loop 1)
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Examples of Coolant Densities Calculated for
Various Channel Groups

1.0

0.9

Channel
A S S S S, T,
------- “"'--._‘ - SFEPR & Sem 8w, 7' B

0.8 -

s s aaan Sam— — — 6

0.7 =

0.6

0.5 -

0.4 -

Density (g/cm)

0.3

0.2 -

So
Su
-
~~~
..~.

0.1 -

-
----------------

2005 November



Examples of Power Pulses Calculated for the CANDU-6
for an Individual Bundle and Core Halves -
alculation gives power also for each channel & bundle

AVERAGE ELEMENT IN BROKEN LOOP
AVERAGE ELEMENT IN INTACT LOOP
HOT-ELEMENT

2005 November



