












Machine	Country	Minor Radius a(m)	Elongat ion k	Major Radius R(m)	Plasma Current I (MA)	Toroidal Field B (T)	Input Power P (MW)	Start Date
ITER	Internation.	2.0	1.75	6.2	15	5.3	73+	2013**
JET	EU	1.00	1.8	2.96	7.0	3.5	42	1983
JT-60U	JAPAN	0.85	1.6	3.2	4.5	4.4	40	1991
TFTR	USA	0.85	1.0	2.50	2.7	5.6	40	(1982) Closed
TORE- SUPRA	FRANCE	0.80	1.0	2.4	2.0	4.2	22	1988
T-15	RUSSIA	0.70	1.0	2.4	2.0	4.0	-	1989
DIII-D	USA	0.67	2.5	1.67	3.0	2.1	22	1986
ASDEX-U	GERMANY	0.5	1.7	1.67	1.4	3.5	16	1991
TEXTOR- 94	GERMANY	0.46	1	1.75	0.8	2.6	8	1994
FT-U	ITALY	0.31	1.0	0.92	1.2	7.5	-	1988
тсу	SWITZERL AND	0.24	3.0	0.875	1.2	1.43	4.5	1992
C-MOD	USA	0.22	1.8	0.67	1.5	8.07	4.5	1992
MAST	UK	0.5	3	0.7	2	0.63	6.5	1999
NSTX	USA	0.67	1.9	0.85	1.0	0.6	11.5	1999

ITER vs. DT Experiments to Date (Sept. 2003)								
	ITER (Pulsed)	ITER (Steady State)	TFTR (D-T)	JET (D-T)				
Radius (m)	6.2	6.4	2.5	3.0				
Plasma Volume(m3)	831	770	38	153				
Normalized Pressure	2.8%	2.8%	1.1%	2.6%				
Normalized Confinement	1.0	1.6	1.3	1.6				
Pressure Driven Current Fraction	10%	48%	26%	10%				
Magnetic Field Strength (T)	5.3	5.2	5.6	3.5				
Fusion Power (MW)	500	360	11	16				
Q	10	6	0.27	0.64				
JT-60: Q (DT-eq. for pure DD fusion) = 1.25								

US DOE and A Twenty Year Outlook

Facilities for the Future of Science

Priority No. 1: ITER

Priority No. 18: Next Step Spherical Torus (NSST) Experiment

Priority No. 23: Fusion Energy Contingency

CONCLUSIONS

• Fusion energy will be needed in the near future.

◆ ITER is the first fusion science experiment capable of producing a self-sustaining fusion reaction "burningplasma." It is the next and essential step on the path toward demonstrating the scientific and technological feasibility of fusion energy.

♦ US Depart. of Energy (Nov. 2003) listed ITER as No.1 priority in the Facilities for the Future of Science (A 20 Year Outlook)

• Canada's federal government once again takes a short-sighted decision of passing on the ITER bid (Nov. 2003). In 1997, it closed both CFFTP and Tokamak de Varennes due to deficit reduction measures.

