Session 1

- A. Administrative
 - 1. Welcome
 - Introduction of Instructors
 - Students introduce themselves
 - 2. UNENE Issues
 - Registration for courses
 - Payment of fees
 - Future courses
 - 3. Reactor Physics Course Arrangements
 - Course days/times/rooms & locations- Module I
 - Course days/times/rooms & locations- Module II
 - Date of final exam
 - Rooms & locations
 - Lunches, Breaks
 - Washrooms
 - Use of Computers
 - 4. Evaluation

	• 5 problem sets total	10%
	Due Sat. & Sun. morning, Module I	
	Due Fri., Sat & Sun morning Module II	
	Short Report on Technical Topic	20%
	Due first morning of Module II	
	Presentation to be made in Session 13/14	
	Multiple-choice test	20%
	➢ 50 qualitative multiple-choice questions	
	Last day/session of Module II	
	➤ 1.5 hrs	
	• Final Exam	50%
	Date to be set in Dec 2003 or Jan 2004	
	Numerical reactor-physics problems	
5.	Learning Materials	
	• Course web site http://nuceng.mcmaster.ca/ep6d3/ep6d3h	ome.htm
	Notes on Course web site	

- Book by A.A. Harms, *Principles of Nuclear Science and Engineering*, John Wiley & Sons, 1987, reprinted in the McMaster Course Ware (\$19.95)
- Book by H. Tammemagi and D. Jackson, "Unlocking the Atom: the Canadian Book on Nuclear technology", McMaster University Press, 2002 (\$40.00)
- Chart of the isotopes (\$1.50)

- 6. Course Outline
 - Course objectives:
 - To review and understand the fundamental physics underlying nuclear technology to ensure a solid basis for the other UNENE courses.
 - To survey general knowledge and acquire a context and perspective on all aspects of nuclear engineering.
 - To learn the essential physical principles on which nuclear reactors are based and to be able to apply them to understand, calculate and predict the operation of reactors.
 - Learning Outcomes
 - > To understand the physical processes
 - > To understand and be able to write down the basic equations
 - > To be able to solve the basic equations
 - To be able to simulate a reactor/source configuration as appropriate in terms of : number of dimensions, steady state of transient operation, number of neutron energy groups, delayed precursors, space dependent properties and grid spacing
 - Session length 1.5 hours (=1 Golubchikov)
 - 24 sessions
 - discussion of the main points of the outline
 - flux, cross sections, delayed neutrons, burnup, Xenon, kinetics
- B. Introduction to Nuclear Energy
 - *[Harms, Chapter 1, pp. 1-14]
 - Einstein & his equation
 - mass-energy equivalence $E=mc^2$
 - energy intensity **[Unlocking, Chapter 5, pp.55-71]
 - mass-energy conservation nuclear reactions
 - electron volts as a unit
 - energy, power and reactions

NOTES:

^{*[}Harms, Chapter 1, pp. 1-14] means Chapter 1 pages 1-14 of the book by A.A. Harms, Principles of Nuclear

Science and Engineering, John Wiley & Sons, 1987, as reprinted in the Course Ware

^{** [}Unlocking, Chapter 5, pp.55-71] means Chapter 5, pages 55-71 of H. Tammemagi and D. Jackson, Unlocking the Atom, McMaster University Press, 2002