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Abstract 
 
A multigrid solver is developed for dealing with the spatial neutron kinetics problem in a 
nuclear reactor. Neutron kinetics is modeled by the multigroup diffusion equations, 
dicretized by using a cell-centered finite volume technique in space, and a fully implicit 
scheme in time. Coarse grid equations are derived by using an additive correction 
method, allowing for easy coarsening of the grids without having to know their geometry. 
Even with a point Gauss-Seidel as a smoother and a simple V-cycle, the multigrid solver 
is shown to have the convergence rate being not only fast but also weakly dependent on 
the mesh size of discretization. Further improvement of the multigrid components is 
expected to make the solver optimal. 
            
Introduction 
 
The control and safety analysis of a nuclear reactor strongly relies on the prediction of 
transient behaviour of the reactor system under both normal operating conditions and 
accident situations. The analysis of such transients has been traditionally based on 
numerical simulation of coupled neutron kinetics and thermalhydraulics. While most 
reactor transient codes (e.g. CATHENA [1] or RELAP5 [2]) now employ the modern 
thermalhydraulic models that reflect the up-to-date knowledge of governing phenomena, 
these codes still depend on simplified neutron kinetics models (i.e. point reactor or 
dimensionally reduced models) whose results tend to be not only inaccurate but also non-
conservative for many important cases of accident analyses [3]. The incorporation of a 
full 3D core model of neutron kinetics into the reactor system code will allow “best-
estimate” simulations of reactor dynamics but still requires an extensive computation [4]. 
The purpose of this work is to investigate an efficient method for accurate solution of the 
spatial neutron kinetics problem.   
 
It is commonly agreed that the kinetics of neutrons in a nuclear reactor is adequately 
represented by the multigroup neutron diffusion equations, together with the 6-group 
delayed neutron precursor equations [5]. Typically, finite difference methods are the 
simplest and most direct approach to the numerical solution of such a system of parabolic 
partial differential equations. The primary advantage of the finite difference method is 
that differential equations can be straightforwardly expressed in difference form to obtain 
algebraic expressions. Also, the method is shown to converge to the exact solution in the 
limit of infinitely fine mesh spacing. However, to obtain an acceptable accuracy, the 
method must work with a very fine grid, giving rise to an extremely large number of 
discretized equations to solve at each time step. Moreover, to avoid numerical instability 
and inconsistency, an implicit scheme for time integration must be used. Basic numerical 
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methods, direct and iterative, are quite inefficient for inverting such a large algebraic 
system in 3D geometry. 
      
The inefficiency of the finite difference methods has led to the development of various 
coarse-mesh methods [6] for dealing with the space problem of reactor kinetics, among 
which the nodal methods [7] have received the greatest acceptance among the reactor 
physics community. Nodal methods utilize a large mesh size in order to reduce the 
number of equations to be solved and thus increase the computational efficiency. 
However, in addition to the great complexity in mathematical derivation and difficulty in 
error analysis, it is difficult to accelerate the convergence for the solution of the nodal 
discretized equations [8]. As a result, the nodal kinetics computation is rather time-
consuming for spatial kinetics problems of practical interest. 
 
Multigrid methods [9] are among the fastest iterative methods known today for solving a 
large, sparse algebraic system arising from the discretization of partial differential 
equations. The idea of all multigrid methods is to compute using a set of grids of different 
scales to eliminate error components (which can be thought as waves) of different 
wavelengths. Many usual iterative methods are very efficient at damping short-wave 
components on a given grid but not as efficient at damping the long-wave components, 
which, however, turn out to be short waves on a coarse enough related grid. In this sense, 
the multigrid is essentially a technique that transfers the error between related grids and 
smoothes its components on appropriate grids. The greatest property of the multigrid is 
that, unlike the usual iterative methods, the multigrid offers a convergence rate that is not 
deteriorated with increasing size of the discretized system. 
 
Although multigrid methods now become a quite standard numerical method in many 
engineering problems, there have been not many applications to reactor kinetics found in 
the literature. As noted above, nodal methods currently predominate in reactor kinetics 
computations but the choice of the nodal unknowns (the node flux and leakage) makes it 
difficult to apply the multgrid to the solution of a quite complex nodal discretized system. 
With the traditional multigrid, known as the geometric multigrid, it is not easy to form 
the coarse grid equations (i.e. the grid coarsening). The algebraic multigrid [9], whose 
grid coarsening is not based on the grid geometry, can be a remedy for this problem but it 
is more expensive and, generally, slower than the geometric multigrid. Even with the 
finite differencing discretization (which is more suitable for multigrid application) there 
are still difficulties encountered in grid coarsening due to great material heterogeneity of 
the reactor core [10]. A very practical procedure in reactor calculations is to homogenize 
separate but regular core regions (cells) such as fuel assemblies or reflectors, in which the 
material properties are treated in an average sense. Due to a strong difference and/or 
discontinuity of the properties from cell to cell, it is easier to refine the grid (i.e. to divide 
each cell) rather than to coarsen it (i.e. to group two or more cells). As a result, the 
coarsest grid still has a relatively large number of equations to solve for.                           
 
In this work, we discretize the kinetics equations by using a cell-centered finite volume 
technique in space and a fully implicit scheme in time. A multigrid solver is developed to 
solve the discretized system at each time step. An additive correction multigrid [11] is 
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used to generate coarse-grid equations by summing up the corresponding residual 
equations on a finer grid. In fact, the coarse-grid equation system is exactly the same in 
form as the fine-grid system but has almost 23 times fewer equations. This coarsening 
method allows for reaching the non-trivial coarsest grid that has only a single node 
without taking into account the coarse-grid properties. A Gauss-Seidel iterative method is 
used as a smoother. Numerical experiments have been performed for the McMaster 
Nuclear Reactor core discretized with different mesh spacing. The preliminary results 
show that, even with the simplest V-cycle, the convergence rate of the multigrid solver is 
much faster than that of the same Gauss-Seidel method on the single fine grid. Moreover, 
while the latter triples in the number of iterations when the grid size doubles, the 
multigrid solver only slightly increases this number. 
 
Another problem in solving a large algebraic system is associated with memory storage 
and computation work per iteration. This problem is not so critical nowadays because it 
can be effectively handled by the implementation of parallel computation on a 
multiprocessor computer system. By using an appropriate smoother method (for example, 
the Jacobi or Red-Black Gauss-Seidel method) the multigrid solver is suitable for such 
parallel computation.           
 
As our goal is to construct a multigrid solver that has a convergence rate independent of 
the fine grid size, it is still required to improve the performance of each multigrid 
component.  
 
Neutron Kinetics Equations 
 
Assume that the kinetics of neutrons in a reactor core is adequately represented by the 
multigroup diffusion equations with delayed neutron effects taken into account. As a 
result, we have a system of parabolic partial differential equations to solve for the neutron 
energy group fluxes φg (g=1,2,...,G) and the delayed neutron precursor group 
concentrations Ci (i=1,2,...,N) in space and time ( ,rv t) [6]: 
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Here,  is the external neutron source. The neutron group constants are denoted by: v – 
speed; D – diffusion coefficient; Σ

ext
gS

t – total cross-section; νΣf – fission yield; Σsg’g – 
scattering cross-section from group g’ into group g; χp and χd – spectra of prompt and 
delayed neutrons, respectively. The delayed neutron group constants are: λi – decay 

constant and βi – fraction yield, β = .  ∑
=

β
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Appropriate initial and boundary conditions are required to make the system closure, 
such that: 

φg( ,rv 0) = φ0g( rv );  Ci( ,rv 0) = Ci0( rv )  and  φg( ,rs
v t)  = 0  ∀t ≥ 0, ∈ boundary sr

v

 
Discretization 
 
For spatial discretization, the finite cell-centered difference method in 3D Cartesian 
geometry is used. Thus, the computational domain, the reactor core extended to its 
boundary, is divided into a number of small rectangular boxes to form a regular grid of 
nodes. The boundary is assumed to be an outer surface at an extrapolation length from the 
fuelled core region. Then, the kinetics equations are integrated over each node volume 
Vp=  using the box integration technique [12]. For a given node P, we define the 

node average flux of energy group g: ≡
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The diffusion term in the RHS is computed, first, by applying the Gauss’s Divergence 
Theorem: 
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where f is any from the six faces (w, e, s, n, u, l) of the cubic node; r is a coordinate x, y 
or z when the face f is, respectively, (w or e), (s or n) and (u or l).  Next, the gradient of 
flux at a node face is approximated by a finite difference, for example at face w:  
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It is noted here that, for acceptable accuracy of this approximation, the grid spacing or the 
node size h must be less than the smallest diffusion length [12], which is about 2 cm in 
thermal reactors. The diffusion term can be written as following:           
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where ‘nb’ (neighbouring to P) stands for W, E, N, S, U, L, i.e. the nodes respectively 
West, East, North, South, Upper, Lower of the given node P; and, the coefficients are 

=

g
nba

g
nba r

PnbP

g
f

h
D

÷∆
 (f is the face dividing node P and node ‘nb’).  

 
The remaining terms in the RHS are simply the product of averaged values of the flux 
and group constant within the node. We finally arrive at the following equation system 
for an inner node P (which is not on the boundary): 
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It is convenient to form boundary nodes so that they all have a zero width in the direction 
to a nearby inner node and, hence, they all have zero volume. Equations for boundary 
nodes are derived directly from the boundary conditions:  = 0 for P on the boundary. g

pφ
 
We now discretize equations (3) and (4) in time. Assume that the material properties of 
the reactor core are unchanged during a rather short interval of time ∆t, over which the 
kinetics equations are temporally integrated. If we use the fully implicit scheme, then all 
fluxes and precursor concentrations in the right hand sides of equations (3) and (4) will 
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The boundary and initial conditions are given by:   
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Iterative Solution of Discretized Equations 
 
At each time step, the algebraic system (6) is formed and solved for  by using some 
linear iterative solver such as the Gauss-Seidel (GS). A good initial guess can be the 
solution at the previous time step, i.e. (0)

g
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In system (6), there is not only spatial coupling of the fluxes (by means of diffusion) but 
also the inter-group coupling (by means of scattering and fission) taking place. One can 
use a two-loop procedure similar to the power method [12] for iterating system (6). The 
outer loop is to update the source term including both scattering and fission sources, and 
the inner loop is to compute the spatial fluxes at a given guessed source. It can be 
observed that there is no need to accurately compute the fluxes while in the inner loop 
since the source term is still not accurate itself. It appears that both outer and inner loops 
can be combined in just one. Also, instead of moving from group to group and then from 
node to node in each group, we can now move from node to node and solve G equations 
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for G group fluxes in each node. If G is small (2 to 4 is typically for a thermal reactor), a 
direct method such as the Gaussian elimination can be used with small cost. The 
modified procedure as described is suitable for multigrid and parallel computation as 
well. 
          
Multigrid Solver 

onsider a large algebraic system that arises from the discretization of a set of partial 

(9) 

whe  N×N

et  be an approximation to the exact solution φ of the above system. We define the 

− A  = Ae,  where e = φ −  is the error    (10) 

It is easily seen that solving the algebraic system (9) for φ with initial guess  is 

he error can be expanded in a Fourier series of sine modes of different frequencies, i.e. 

1φ1 = b1 be an algebraic system on a coarse grid with the mesh size h1> h0. Let R 
and P be linear operators of restriction and prolongation used to transfer information 

 
C
differential equations on some computational grid with the mesh size h0=(hx, hy, hz): 

 Aφ = b  (or  A0φ0 = b0)      

re A and b are an  matrix and an N-size vector of the coefficients obtained from 
discretization, φ is an N-size column vectors of the unknowns. Typically, basic iterative 
methods such as GS or SOR are used to solve such a system with an arbitrary initial 
guess. However, it is observed that while the convergence rate is high enough at very first 
several iterations, it slows down quickly, and thus a large number of iterations increasing 
with N are required for the solution to converge.   
 
L  φ~

residual as: 

r = b φ
~

φ
~

φ
~

equivalent to solving the residual system (10) for the error e and then correcting the 
solution as φ = φ~ + e.  
 
T
waves of different wavelengths. It is found from mathematical analysis that the iterative 
methods like GS/SOR reduce only the high frequency mode that has the half wavelength 
of order of the mesh size h [9]. That is, instead of reducing the error these methods 
actually only smooth it (hence their name is ‘smoother’). The low frequency modes with 
larger half wavelengths are not effectively damped out. The idea of the multigrid is to 
send these remaining low frequency modes to a set of coarse enough grids to reduce them 
there by using a cheap iterative method. There are quite good reasons to do so: First, a 
coarser grid always has fewer nodes, hence, fewer unknowns; consequently, it is less 
expensive to solve for the error on coarse grids. Second, more importantly, the remaining 
error component modes, though smooth on the fine grid, become more oscillated on 
coarser grids; consequently, the newly-appearing high frequency modes could be 
effectively damped out by iteration. Another view may be that, in each step a normal 
iterative method propagates disturbances that occur at a given grid point to the points in 
its vicinity only, while with a multigrid the same disturbances manage to spread out all 
over the grid just in one step. 
     
Let A
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between grids, namely, b1 = Rr0 and e0 = Pφ1. To construct a multigrid solver is 
essentially to determine the main components: R, P and A1. R and P are usually chosen, 
while A1 can be determined by one of the following ways: (i) discretize the original 
equations on the grid with mesh size h1, or (ii) compute directly A1 = RA0P. The first 
approach would require a detailed knowledge of coarse grid properties and hence is very 
difficult to be used for a physical space of strongly heterogeneity as a reactor core. One 
could imagine how difficult it would be to determine, say, the diffusion coefficient for the 
whole core. The second approach, depending on the predefined R and P, could be quite 
complicated and costly in computing A1 due to the complexity of A0 for the 
multidimensional multigroup kinetics equations. In this work, we will derive the coarse 
grid equations A1φ1 = b1 based on the additive correction method [11].  
      
Let I, J, K be the inner sizes, i.e. excluding the boundary nodes, of the fine grid (FG) on 

h the original equations are spatially discretized. The grid size, i.e. the total number 

ℓ-1+1)/2], Kℓ = [(Kℓ-1+1)/2] 

tio se CG nodes are derived as follow. Starting from 
e corner node (i,j,k) = (1,1,1) on FG, in one direction, say, i, line by line we sum up the 

hat after the m-th iteration, the fluxes at the (m+1)-th iteration can be 
alculated by: 

 is obvious that if  solution converg  th tuting this expression 
into (6) with the residual replaced by (8), we get the residual equation for the error: 

 

Suppose that all fluxes in the block have the me error and denote it as = 

whic
of inner nodes, on FG is I×J×K. Each node is denoted by three-integer index i, j, k 
(i=1,2,...,I; j=1,2,...,J; k=1,2,...,K). Let CGℓ (ℓ=1,2,...,L) be a set of coarse grids generated 
from FG and having the grid size successively reduced approximately twice until the 
coarsest grid that has only one node. That is, 
 CG0 ≡ FG I0 = I, J0 = J, K0 = K 
  CGℓ  Iℓ = [(Iℓ-1+1)/2], Jℓ = [(J
 CGL  IL = JL = KL = 1 
 
The algebraic equa ns in each of the
th
equations (6) in every two consecutive nodes and put the resulting equation in one 
corresponding node on CG. If the total number of FG nodes in the line is odd, then the 
equation in the last FG node is kept unchanged for the last node on CG. Then, the process 
is repeated in the second and, finally, third directions. That is, a block of up to 8 FG 
nodes (i to i+1; j to j+1; k to k+1) will form one CG node (i1=[(i+1)/2], j1=[(j+1)/2], 
k1=[(k+1)/2]).  
 
Now, assume t
c
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111A
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 where  =  ≡ sum of all residuals in the block   
111 kjiB ∑

block
ijkR

  = ≡ sum of A111 kji
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CG/nb

ijk
nbA  nb in those nodes that remain facing to ‘nb’  

      of the newly-created CG node 
 = −   ≡ sum of all A111 kji
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CG\nb

ijk
nbA P in the block minus sum of all Anb

         other than on faces of the CG node     
 
In case a CG node is formed of fewer than 8 nodes, namely, 4, 2 or 1, the above formulas 
for CG-equation coefficients can still be used, simply replacing the FG coefficient with 
zero whenever any of its index gets out of its bounds.  Equations (11) have the same form 
as of equations (6) but for fewer nodes on the CG. They can be used as coarse grid 
equations for correction of solution on the FG. By doing the same for the remaining CGℓ 
with CGℓ-1 in the role of FG, we will have all needed CG equations. The FG and CG 
equations can be formally written in general matrix notation as: 

Aℓφℓ = bℓ,  ℓ=0,1,…,L        (12) 

The algorithm for iteration of (12) is given as below: 
 At each time step t > 0: 

• Calculate Aℓ (ℓ= 0,1,..., L) and b0  
• On the fine grid (ℓ= 0): 

 Guess φ(0) = φt 
 Iterate until φ converges:  φ(m+1) = MG(0, φ(m), m1, m2, mc) 
 φt+∆t = φ(m+1) 

 Repeat for next time step t = t+∆t 

where the multigrid solver MG(…) is given by  

MG(ℓ, , m*
lφ 1, m2, mc){ 

 if(ℓ=L){  Solve  ALφL = bL } 
 else{ 

 Smooth m1 times on  Aℓφℓ = bℓ with the initial guess  *
lφ

 Calculate the residual rℓ = bℓ - Aℓφℓ 
 Transfer the residual bℓ+1 = Rrℓ  
 Call mc times  MG(ℓ+1,  *

1+φl
= 0, m , m , m ) 1 2 c

 Correct the solution  φℓ = φℓ + Pφℓ+1 
 Smooth m2 times on  Aℓφℓ = bℓ  

 } 
 return φℓ

} 

In this algorithm, R adds the residual in a given grid to the source term on the next 
coarser grid. P simply takes the coarse grid solution as correction for the solution on the 
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finer grid. m1 and m2 are the numbers of pre- and post-smoothing sweeps; mc is the 
cycling strategy number: mc = 1 for V-cycle and mc = 2 for W-cycle as: 
 
 
 
 
 
    
 
 
The convergence rate of an MG scheme may also depend on the choice of the smoother, 
as well as the numbers of pre- and post-smoothing sweeps. 
 
Numerical Experiments 
 
As a model for numerical experiments, we use the McMaster Nuclear Reactor core, with 
4 neutron groups and 6 groups of delayed neutron precursors. We first choose the basic 
grid with the node size on order of a fuel cell. This basic grid would be the same as a 
computational grid for nodal discretization if a nodal method were used. We can further 
refine this basic grid to have as many nodes as we want. Due to limitation of memory of 
our PC, we can only run the multigrid solver on the finest grid of the mesh size equal to 
half that of the basic grid. This limitation can be overcome by parallel computation on a 
multiprocessor system. 
   
We have tried the GS as a smoother and V-cycle in order to compare their convergence 
rates. At a given time step, the number of iterations required for the solution to converge 
with the same stopping criteria is given in Table 1. 

 
Table 1. Convergence rate vs. grid size 

Basic grid Refined grid#iterations 
Method 10×13×12 = 1,560 nodes 20×26×24 = 12,480 nodes 

GS 120  384 

MG-V(1,1) 18 23 

ycle 

ℓ=L 
\– restriction; / – prolongation; • – smoothing 

ℓ=1 
ℓ=0 

V-c W-cycle 

 Time step: ∆t = 10-4s   Stopping criterion: ε = 10-5

 
It can be seen that MG-V, the simplest, is much better than GS (although one iteration of 
MG-V(1,1) takes 4-5 times work as much as a single GS iteration does). The advantage is 
more obvious with the increasing grid size. When the number of grid nodes doubles, the 
convergence rate of GS decreases more than 3 times while that of MG changes slightly.    
The MG is evidently a fast iterative solver for large algebraic system. But the point here 
is that, the convergence rate of MG is independent of the grid size (although our MG 
solver is still not optimal yet and thus requires further improvement). It is expected that, 
with larger grid size, e.g. of millions of nodes, its convergence rate does not deteriorate 
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considerably. It can also be expected that, if any of nodal methods were used, the nodal 
discretized system would be more complex than the simple system (6) and hence would 
require more computational time to solve. This leads us to believe that the method based 
on finite differencing discretization and MG solver could be better than the nodal 
approach in many aspects, except the time step (∆t must be reduced with smaller mesh 
spacing). Perhaps, we should use some method for lengthening the time step such as the 
improved quasistatic method [3] in conjunction with an MG-solver for computing the 
flux shape.               
 
Conclusion 
 
The multigrid solver, presented in this paper, is shown to be an efficient and accurate 
method for numerical solution of the 3D neutron kinetics equations. While the finite 
differencing discretization with fine mesh is used to obtain an acceptable accuracy, the 
multigrid can solve the large system of discretized equations in just a small number of 
iterations that are weakly dependent on the system size. Further improvement of the 
multigrid components is required for the solver to become optimal, i.e. its convergence 
rate is independent of the grid size.                      
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