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Abstra
tA framework 
alled the MOOSE (MOving Obje
t Simulation Environment) has beendeveloped for modeling moving 
omponents in the presen
e of di�usion phenomena.The framework fo
uses on general ellipti
 and paraboli
 problems whi
h 
an be rep-resented on a two dimensional pat
hed Cartesian grid. The idea of a problem solv-ing environment is presented and the MOOSE is developed within this 
on
eptualparadigm using several novel implementation te
hniques. Code generation, symboli

omputation, and high performan
e spe
tral solvers are joined within a �exible anduni�ed tool that implements a mesh linking algorithm 
apable of minimizing errorsindu
ed by moving 
omponents in 
lose proximity to material dis
ontinuities.The MOOSE 
onstru
ts linear �nite di�eren
e models based on symboli
 math-emati
al des
riptions supplied by the model designer. Solutions are 
omputed bytransforming abstra
t des
riptions into matrix notation 
ompatible with a 
olle
tionof high performan
e parallel linear and eigenvalue solvers. Design te
hniques are pre-sented for the implementation of a pat
hed non-
onformal mesh that links groups ofsub-meshes, whi
h 
an move relative to one another. The generation of a sequen
e ofmatri
es whi
h model dynami
 
omponents using moving meshes that 
onserve �owat their boundaries, and the performan
e of the framework when applied to a varietyof test 
ases is dis
ussed.A major 
ase study based on the 1994 rea
tivity insertion in
ident whi
h o

urredat the M
Master Nu
lear Rea
tor is undertaken. The �exibility, pre
ision, and ro-bustness of the MOOSE framework and algorithms are exer
ised by this study. Theresults from the original te
h report are veri�ed for higher dimensional 
ases.The MOOSE uses te
hniques that are mathemati
ally simpler than previouslya

epted non-linear nodal methods used in nu
lear engineering, but still 
apable ofiii



easily representing moving 
omponents. A 
on
ise ruleset for linking moving meshesis presented whi
h is demonstrated by the framework. Error redu
tions of severalorders of magnitude are demonstrated by the MOOSE's multi-resolution moving meshalgorithm over more 
ostly brute for
e strategies.

iv
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Chapter 1
Introdu
tion
1.1 Problem Solving Environments (PSEs)Engineering design as an a
tivity was originally the domain of s
ale models and math-emati
al paper approximations that gave good intuition to system designers as to howa new ma
hine would perform. In the last 50 years 
omputers have taken an in
reas-ing role in the engineering design pro
ess, to the point where today the subje
t of
omputational s
ien
e and engineering merits treatment on its own. Computationals
ien
e and engineering is often thought of as a dis
ipline positioned between theoret-i
al and experimental areas of s
ien
e and engineering [133, 134, 135℄. Relevant areasof engineering [52, 88℄ and s
ien
e in
lude, but are not limited to, �uid me
hani
s,thermodynami
s, ele
tromagneti
 phenomena, nu
lear rea
tor simulation, weatherfore
asting, and air
raft design.As simulation 
osts de
rease and physi
al prototype 
osts in
rease there is morepressure to a

ept simulation results. As a 
onsequen
e both model and software val-idation issues are be
oming more important. Validation of most simulation systems isoften inadequate. The three prin
iple sour
es of simulation error are: in
orre
t math-1
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al models, ina

urate numeri
al approximations, and in
orre
tly 
onstru
tedsoftware systems. Comparison with known results is the best form of validation.However, for problems addressed by some software systems there are no known re-sults, for example the next earthquake to hit California, or the next great �re inChi
ago.The state of the art in 
omputer hardware provides the engineer who is interestedin simulation with powerful tools at low 
ost. The 
urrent di�
ulty lies in takingadvantage of these tools. In the last 20 years mathemati
al libraries have providedan ex
ellent model for software reuse. Many people use 
ommer
ial and governmentsponsored libraries su
h as NAG, IMSL, and LAPACK [52℄. Libraries in themselves donot entirely solve the problem of model 
onstru
tion sin
e any given library assumes a
ertain amount of expertise on the part of the user. The user must still 
onvert theirproblem into the generi
 mathemati
al language of the numeri
al solver, and the usermust understand that language so the 
orre
t algorithms 
an be sele
ted from thelibrary.The purpose of a Problem Solving Environment (PSE) is to automate the pro
essof model 
onstru
tion by 
reating a reusable tool for a domain of problems. The
lassi
al simulation design and 
onstru
tion pro
ess is uni�ed in a single tool thaten
apsulates expertise from a variety of domains. A PSE 
olle
ts together severalsolution methods and models, addressing issues su
h as appropriate software reuse,intrinsi
 model validation, and intelligent algorithm sele
tion.The ideal PSE is an abstra
t 
on
ept whi
h resear
hers in the area are still strivingto a
hieve. PSEs are often limited in their generality, their performan
e, the solutionalgorithms that they implement, the resolution of the models that they 
ompute andthe degree to whi
h the problem solving pro
ess is automated.2
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• PSE should be able to handle:� Problem spe
i�
ation- typi
ally in
ludes physi
al model and geometri
model� Solution spe
i�
ation- fa
ilitates the 
hoi
e of algorithms and solutionstrategies� Model 
ompilation and exe
ution

∗ Sometimes also in
ludes solution steering, and progress monitoring
∗ Data 
he
k-pointing- 
al
ulation may require days or weeks,� Output rendering and analysis, typi
ally graphi
alPSE resear
h must somehow address the short
omings in the 
urrent state of theart. In the last 15 years several workshops and dis
ussion sessions have fo
used onPSEs. To supplement the re
ent 
onferen
es a book edited by Houstis et. al [88℄was published whi
h 
olle
ts 28 arti
les dis
ussing several important aspe
ts of PSEsalong with a 
omprehensive bibliography with over 400 entries.Some PSE resear
h horizons are dis
ussed by John Ri
e in two separate arti
les[134, 135℄, where he des
ribes multi-physi
s phenomena and multi-s
ale phenomena.A

ording to Ri
e, multi-physi
s phenomena involve two or more separate physi
alregimes. An example might be heating a pot of water, the heat sour
e being onesystem, the �uid dynami
s of the water would represent the other. Multi-physi
sphenomena might be spatially and temporally superimposed, or might be separate.The interfa
es between the phenomena present a variety of 
hallenges. It might bedi�
ult to obtain information about the interfa
es, or in some 
ases there may be noknown valid models whi
h des
ribe the interfa
es. Fri
tion, for example, a�e
ts allsorts of appli
ations and is espe
ially relevant for des
ribing losses that o

ur at an3
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e. Despite this, there is no reliable 
onsistent model for fri
tion e�e
ts whi
his universally appli
able.Multi-s
ale phenomena involve vastly di�erent time and spa
e s
ales. For examplea jet engine is several meters long, yet its fuel-spray droplets are 5 to 10 mi
rons. Itsblades are tens of 
entimeters long, but 
ra
ks form in areas of tens of angstroms insize. Sin
e it is impossible to model the entire system at the resolution of mi
ronsthe key issue be
omes de�ning a 
onsistent way to simulate all of these phenomenasimultaneously. The 
urrent approa
h is to use models of di�erent s
ales and use aspe
ial approximation that links the �ne s
ale model to the 
oarse s
ale model. Thismethod is problem spe
i�
 and prone to a variety of errors.The predi
ted growth of 
omputational power and network bandwidth suggeststhat 
omputational modeling will shift from fo
using on a single 
omponent designto the design of an entire system. The analysis of an engine involves the domains ofthermodynami
s (gives the behavior of the gases in the piston-
ylinder assemblies),me
hani
s (gives the kinemati
 and dynami
 behavior of pistons, links, 
ranks, andso forth), stru
tures (gives the stresses and strains on the parts) and geometry (givesthe shape of the 
omponents and the stru
tural 
onstraints). The design of an enginerequires that these di�erent domain spe
i�
 analyses intera
t to �nd the �nal solution[18, 87℄.The goal of the PSE is to solve all of these problems in an elegant e�
ient pa
kage.Bringing together the expertise of resear
hers from a variety of areas and 
on
entratingit into a single tool represents the task fa
ed by the PSE designer. The state of the artin simulation design and implementation today is very mu
h like the state of the art intype setting and publishing 100 years ago. In an analogous way, simulation resear
hersare assembling thoughts from movable foundry type, transferred from a distributionbox to a 
omposition sti
k, and laboriously mounted into a press to produ
e several4
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opies of a single page of a large volume. The PSE designer foresees thefuture of simulation in the form that desktop publishing software may have appeared
enturies ago to an early printing press operator.1.2 Addressing Cross Dis
iplinary IssuesSolving large engineering problems requires the 
ollaboration of experts from a widevariety of �elds. A typi
al engineering problem may require:
• Domain engineer- provides spe
ial understanding of problem area
• Numeri
al spe
ialist- provides expertise in numeri
al algorithms and methods,parallel 
omputing, and hardware 
onsiderations
• S
ienti�
 
omputing spe
ialist- provides expertise in optimization, integration,and linear algebra methods
• Software implementation group- supplies the software implementation whi
hlinks the various 
omponents together and the implementation of algorithmsdesigned by other spe
ialistsIt is generally a
knowledged [52, 122℄ that 
ollaboration between these diverse groupsis di�
ult to establish. While some persons may have skills that 
over several areas,usually a single person 
annot a
quire all the knowledge required for a high perfor-man
e engineering problem. Stanzione writes�To summarize, the heart of the problem is not that inadequate 
om-puting fa
ilities exist to run simulations, but rather that the expertiserequired to 
reate the simulation 
odes for the target 
omputing resour
e5
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t groups of people. Resear
hers in the appli
a-tion domain on one side and [High Performan
e Computing℄ experts on theother, ea
h with too many demands from their own �elds to adequatelylearn the others.�[150℄S
ienti�
 resear
h is inherently an a
t of 
ollaborative problem solving. Merely pro-viding a

ess to 
omputational resour
es and domain tools is not enough to fa
ilitateor enhan
e s
ienti�
 problem solving. PSE design is about bridging a gap between
omputational resour
es, appropriate algorithms and the people who need to use thoseresour
es.S
ien
e has developed a standard language with many sub-diale
ts for di�erentsub-�elds. A PSE should use this language. Some parts of s
ienti�
 language are wellstandardized, for example symboli
 mathemati
s, and numeri
al algorithms, otherparts are not. In parti
ular 
omputer languages for geometry tend to be primitiveand in
onsistent. Mesh and grid generators are used to dis
retize geometry but thesoftware is 
omplex and less than 
ompletely robust or reliable [87℄.The experiment is the vehi
le through whi
h s
ientists and engineers atta
k theirresear
h. A study done by [96℄ identi�ed 
ertain pra
ti
es in the design and exe
utionof models.
• Experiments are built through de�ning sequential steps that utilize the model,observational data, appli
ation tools, 
omputers and other mis
ellaneous re-sour
es.
• The experimentation pro
ess is highly repetitive. A 
y
le of steps is repeatedthat in
ludes modifying the 
on�guration and initial 
onditions of the 
ompu-tational experiment, exe
uting the experiment, and evaluating the generatedoutput and its 
onvergen
e to observed or theorized results.6
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• Computational experiments require long sequen
es of 
omputer operations su
has logging into the system, querying for and 
olle
ting data from on-line databasesand repositories, running appli
ations on distributed 
omputers, 
apturing ex-periment output to �les, transferring data �les between 
omputers, applyingtranslators to 
onvert data formats, and exe
uting analysis and visualizationpa
kages on spe
i�
 data sets.
• In designing and exe
uting experiments, pra
titioners typi
ally maintain thedesign and exe
ution pro
esses in notes, maintaining a log of their a
tivitiesA PSE that 
aptures not only the language of s
ien
e and engineering but also the pro-
edures that the s
ientist or engineer would follow 
ontributes better to the problemsolving pro
ess [149℄.The use of appropriate abstra
tions is the key to mastering the language of s
ien
eand engineering, and is the foundation upon whi
h a well developed PSE must bebuilt. The designer of a PSE is 
harged with the task of not only solving a di�
ult
omputational problem, but also of solving that problem in a 
ontextually spe
i�
way that is meaningful to the pra
titioners of the target domain. A tool that requiresthe pra
titioner to learn many new task spe
i�
 pro
edures for its use, or delve deeplyinto new areas of s
ien
e and gain a deep understanding of methodologies solely forthe purpose of simulation and problem solving, will be less of an aid than a tool whi
hhides its implementation behind the terminology and pro
edures of the target user.1.3 Simulating MotionSimulation environments designed to study steady state or transient problems al-ready have many representatives in both 
ommer
ial forms, and as resear
h proje
ts.7
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ellent example of a su

essful 
ommer
ial PSE that fo
uses on theappli
ation of unstru
tured �nite element meshes to �uid me
hani
s, ele
trodynami
sand a wide variety of other problem domains. An important sub-domain of transientsimulations are those problems that examine phenomena in the presen
e of moving
omponents. PSEs for the study of motion are not well represented. Overture [32, 33℄is one example of an a
ademi
 proje
t whi
h fo
uses on linking deformed overlap-ping stru
tured meshes for the study of �uid �ow problems and moving 
omponents,however there are very few other general proje
ts in this area.This thesis uses as its target problem one inspired by rea
tor safety analysis [4,57, 61, 69, 106℄. Histori
ally nu
lear engineering papers have used Cartesian mesheswith non-linear approximations in very large mesh 
ells to model transient problems.The most popular methods are referred to as nodal methods. Nodal methods [102,109, 123℄ are able to use very large geometri
 
ells be
ause ea
h 
ell uses a 
omplexset of non-linear equations to estimate the neutron density distribution within that
ell. Nodal methods have been reported to be an order of magnitude faster thansome linear implementations of equal pre
ision. Control rod motion is modeled withnodal methods by using spe
ial approximations [95℄ to estimate the behavior of theleading and trailing 
ell of moving assemblies. This style of solution is in
ompatiblewith existing generi
 tools like FEMLAB or Overture, pre
luding their appli
ation.Existing multi-physi
s PSEs do not provide a drop in repla
ement solution for movingassembly simulation s
enarios.Nodal methods have a variety of di�
ulties. The mathemati
s behind nodal meth-ods tends to be dense. Simulations based on nodal methods have limited generality. Anodal solution is often only valid for a narrow range of solutions, and nodal methodsare also often limited to a very few number of energy groups, typi
ally two. The orig-inal nodal methods required 
omplex 
alibration of linkage 
onstants. While modern8
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alibrating 
ell by 
ell linkage, it has beenat the pri
e of further mathemati
al 
omplexity. Given some of the problems withnodal methods, and the absen
e of a generi
 tool for modeling moving 
omponents,provides the spe
ial fo
us for the development of the MOOSE framework.In the last 15 years there have been remarkable innovations in solution te
hniquesfor linear [21℄ and eigenvalue [17℄ problems and some pra
ti
al implementations ofthose solution te
hniques have been produ
ed. Very re
ently, a new publi
 domaineigenvalue solver, SLEP
 [81℄, based on the already well established high performan
eparallel linear solver PETS
, has rea
hed a state of noteworthy maturity. SLEP
'smost re
ent release (as of O
t 2006) in
orporates the Krylov S
hur method whi
hprovides reliable and fast 
al
ulations of extremal eigenvalues. SLEP
 is able to solvevery hard eigenvalue problems of the general form Ax = kBx. Although not limitedto the followings 
ases, but of interest to pra
titioners of nu
lear engineering, SLEP

an handle problems where A is non-symmetri
, and where B is singular, and SLEP

an be 
on�gured to solve for the single smallest eigenvalue near unity. This 
lassof problems 
orresponds to a general interpretation of the steady state multi-groupneutron di�usion problem. While existing PSEs do take advantage of similar solvers,issues related to motion as it o

urs in the 
ontext of a rea
tor safety analysis problemrequire spe
ial attention.In parti
ular this thesis will dis
uss what bene�ts 
ould be realized through linkingtogether a 
olle
tion of meshes, what pre
ise te
hniques are required to ensure thatthe linked meshes behave well, how errors asso
iated with moving 
omponents 
an bemeasured and analyzed to establish parameters for the estimation of the 
orre
tnessof the mesh, all done within the 
ontext of linear approximations so that the mostre
ent advan
es in linear problem solving libraries 
an be taken advantage of.The MOOSE is su
h a tool. Its overall design is not limited to the 
onstraints of9
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lear engineering problem, however this problem presents a su�
ient numberof 
hallenges that by studying it, the breadth of problem types that the MOOSE is
apable of modeling 
an be illustrated. The MOOSE is able to model both transientand steady state problems 
hara
terized by ellipti
 and paraboli
 equations, and to alimited extent some hyperboli
 equations. Both linear and eigenvalue problems 
anbe spe
i�ed with the MOOSE. Simulations are limited to two dimensions, and theMOOSE provides only a very rudimentary user interfa
e. Despite these limitations,the MOOSE is still extremely �exible, and in the 
ourse of this thesis a variety ofstudies will demonstrate the breadth of problem types the MOOSE is able to address.1.4 The M
Master Nu
lear Rea
torThe M
Master Nu
lear Rea
tor (MNR) has a 45 year history on the M
Master 
am-pus. It has an operating budget of several million dollars per year, and it is one of thefew (if not the only) 
ommer
ially self sustaining resear
h group on 
ampus, derivingfunding not only from resear
h grants but also from the sale of produ
ts and ser-vi
es. The rea
tor brings together individuals from a variety of dis
iplines in
ludingphysi
s, ele
tri
al engineering, 
omputer s
ien
e, me
hani
al engineering, and materi-als s
ien
e as well as the interests of members from areas not typi
ally asso
iated withengineering like medi
ine and ar
haeology. Over a dozen s
ientists and engineers havededi
ated themselves to the maintenan
e and study of the experimental MaterialsTesting and Resear
h Rea
tor (MTRR).Rea
tor modeling problems are multi-physi
s problems. Several physi
al pro
essesneed to be modeled 
on
urrently, in
luding �uid �ow through the 
ore, neutron �uxprodu
ed within the 
ore, and other e�e
ts like heat distribution a
ross the 
ore el-ements are also important. In addition to the physi
al pro
esses of the 
ore the10



PhD thesis D. Gilbert M
Master - Ele
tri
al and Computer Engineeringele
tri
al and 
ontrol me
hanisms play an important part of the safety analysis. Therea
tor as a me
hanism is not only a 
omplex physi
al system whi
h 
ombines �ssion-ing uranium with a heat transport model, but also links these physi
al phenomenathrough a 
omplex system of sensors, 
ontrol relays and safety 
ir
uits whi
h mustrespond with 100% reliability in small fra
tions of se
onds. Rea
tor 
omponents 
an
hange position both in a gross way, as in the reorganization of fuel assemblies inthe 
ore, but also in a �ne way as in the repositioning of a 
ontrol rod by a smallfra
tion of a 
entimeter. Developing a system 
apable of modeling all of these pro-
esses 
on
urrently presents a wide variety of te
hni
al di�
ulties at the 
utting edgeof 
omputational s
ien
e. This thesis will address some of these simulation models.1.5 The MOOSEA major subje
t of dis
ussion will be the presentation of a problem solving frameworkthat models the motion of 
omponents within a multi-physi
s view of engineeringobje
ts and makes use of existing s
ienti�
 software 
omponents. Issues regardingtest beds, important 
omponents and knowledge bases will not be addressed. Thevalidation of the models will be treated with spe
i�
 examples, rather than the moregeneralized automati
 validation dis
ussed by some authors.The MOOSE was developed with the goal of being able to examine problemsthat study moving 
omponents. Its parti
ular fo
us is maintaining a high degree ofpre
ision without resorting to brute for
e ta
ti
s like using highly re�ned meshes orex
essively small or stri
tly regimented time in
rements to model position 
hanges inits 
omponents. As a prototype PSE, the MOOSE attempts to redu
e the amount ofwork required for the implementation of high performan
e �nite di�eren
e simulations.As a high performan
e framework, the MOOSE addresses several open questions re-11
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al approximations ne
essary for the pre
ise solution of steadystate eigenvalue problems and linear transient problems for a variety of problem areas.This thesis provides 5 major 
ontributions1. a 
learly de�ned methodology for the linking of meshes as it applies to moving
omponents within adve
tive and di�usion based �nite di�eren
e simulations2. detailed error analysis whi
h address two major questions:(a) the extent to whi
h using 
oarse meshes with spe
ial motion te
hniques
an improve upon performan
e (in terms of pre
ision and exe
ution times)over 
lassi
al linear te
hniques using dense meshes, or alternatively 
lassi
alnon-linear te
hniques based on 
oarse meshes(b) whether interpolation is su�
ient to 
onne
t meshes, or whether 
onser-vation te
hniques are required, along with several spe
ial 
onsiderationsrelevant to di�usion problems not before dis
ussed in the literature3. detailed re-examination of the estimated power peak reported in the 1997 MNRte
hni
al report4. a prototype implementation of the MOOSE framework 
learly identifying avariety of design issues and solutions to those problems using various re
entte
hniques5. the �rst highly developed nu
lear appli
ation based on the Krylov-S
hur methodimplemented within the SLEP
 proje
t and a pra
ti
al examination of thissolver's performan
e, pre
ision, and 
apabilitiesWhile the MOOSE framework is generi
 enough to address a broad array of problemtypes, its development is inspired by a parti
ular problem, that of modeling the motion12
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omponents. Chapter 2 will present a review of literature as it relates to this thesis,a review of 
lassi
al sparse matrix solution te
hniques, a review of time integrationmethods, a dis
ussion of established mesh linking methodologies as they relate to thesimulation of motion, and a general history of PSEs. Chapter 3 presents the MOOSEar
hite
ture fo
using on major framework 
omponents and methodologies, in
ludinga dis
ussion of spe
ial 
ode generation te
hniques as used by the MOOSE, mathemat-i
al libraries and external pa
kages used by the MOOSE, and details spe
i�
 to themathemati
s behind the MOOSE's mesh linking pro
edures. Chapter 4 develops a
olle
tion of simple steady state and transient models drawn from standard examplesfrom a variety of areas and 
ompares the solutions generated by the MOOSE with
losed form solutions for the purpose of validating the MOOSE. Representatives fromthe three fundamental types of PDEs, paraboli
, ellipti
 and hyperboli
 equationsare used to verify the implementation of the MOOSE. Chapter 5 develops a singledetailed appli
ation for the study of the 1994 refueling in
ident at the MNR, draw-ing 
on
lusions about the MOOSE's pre
ision versus naive methods, and providing are-examination of the maximum power rea
hed by the 
ore. The refueling in
ident isstudied as both an eigenvalue problem and as a transient problem. The �nal 
hapterwill dis
uss issues unexplored by this thesis, suggest problem areas other than neutrondi�usion that 
ould bene�t from the presented te
hniques, as well as several proposedfuture proje
ts.

13
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Chapter 2
Literature Review
This 
hapter presents a review of literature related to the development of the MOOSE.The MOOSE, as a PSE framework, draws on a variety of implementation te
hniques.Its design was modeled on similar tools developed for various appli
ations. The �rstse
tion of this 
hapter presents a short review of physi
al models used in subsequent
hapters. A 
lassi�
ation of models as ellipti
, paraboli
 and hyperboli
 is presentedfollowed by several details ne
essary for the understanding of the neutron di�usionmodel as it is presented in Chapter 5.The se
ond se
tion of this 
hapter presents a summary of some of the fundamen-tal te
hniques used by the MOOSE to solve linear problems and eigenvalue problems.The MOOSE is based on a 
olle
tions of numeri
al linear pa
kages. Linear and eigen-value solvers are not implemented within the MOOSE. Rather than presenting thedetails behind the algorithms developed by other resear
hers this se
tion fo
uses onthe 
hara
teristi
s of the solution methods and addresses questions related to why
ertain methods were preferred over others rather than a dis
ussion of how the meth-ods are implemented. Spe
ial attention is given to iterative linear solvers. Transientintegration methods are also addressed. 14
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tion of this 
hapter presents a short dis
ussion of te
hniques for map-ping engineering problems on to 
omputers. Various mesh te
hniques are dis
ussedand reasons for sele
ting one mesh design over another are addressed. One to one ge-ometri
 mappings are 
ontrasted with strategies that deal with 
omponents that arelinked more abstra
tly in terms of input and output ports. Nu
lear engineering nodalmethods are presented as a spe
ialized 
ompromise between one to one mappings andlinked 
omponent methods.The last se
tion of this 
hapter presents a review of problem solving environmentsdes
ribed in engineering literature in the last 10 years. A fair degree of latitude forwhat might be 
onsidered a problem solving environment is taken, 
onsequently awide variety of proje
ts are des
ribed. The breadth of representatives taken from theliterature gives a good indi
ation as to what has been a

omplished to date and givesa sense as to where future resear
h 
an be dire
ted.2.1 Problems of InterestThis se
tion will summarize some of the physi
al problems that fall within the MOOSE'sdomain. Partial di�erential equations are involved in the des
ription of virtually everyphysi
al situation where quantities vary in spa
e and time. The �eld U = U(x, y, z, t)used to des
ribe these quantities must 
ontain spa
e and time 
oordinates as inde-pendent variables. The independen
e of ea
h variable means that the derivatives inthe equations must be partial derivatives. PDEs in
lude phenomena as diverse as dif-fusion, ele
tromagneti
 waves, hydrodynami
s, and quantum me
hani
s (S
hrodingerwaves). In all but the simplest 
ases these equations 
annot be solved analyti
allyand so numeri
al methods must be employed for quantitative results. In a typi
alnumeri
al treatment the dependent variables (su
h as temperature or ele
tri
al po-15
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ribed by their values at dis
rete points of the independent variables(e.g. spa
e and time). Through appropriate dis
retization the PDEs are redu
ed to alarge set of di�eren
e equations. As time evolves, the 
hanges in the �eld U(x, y, z, t)at any one position a�e
ts the �eld at neighboring points.2.1.1 Classifying PDEsMost of the physi
ally important PDEs are of se
ond order and 
an be 
lassi�ed intothree types: paraboli
, ellipti
, or hyperboli
. Roughly speaking, paraboli
 equationsinvolve only a �rst-order derivative in one variable, but have se
ond order deriva-tives in the remaining variables. Examples are the di�usion equation and the time-dependent S
hrodinger equation, whi
h are �rst order in time, but se
ond order inspa
e. Ellipti
 equations involve se
ond order derivatives in ea
h of the independentvariables, ea
h derivative having the same sign when all terms in the equation aregrouped on one side. This 
lass in
ludes Poisson's equation for the ele
trostati
 po-tential and the time-independent S
hrodinger equation, both in two or more spatialvariables. The hyperboli
 equations involve se
ond derivatives of opposite sign, su
has the wave equation des
ribing the vibrations of a stret
hed string [105℄. These de-s
ription are often presented more formally [108℄ by expressing a general 2-D timeindependent PDE as
A (x, y)

∂2U

∂x2
+ 2B (x, y)

∂2U

∂x∂y
+ C (x, y)

∂2U

∂y2
= F

(
x, y, U,

∂U

∂x
,
∂U

∂y

) (2.1)In the spe
ial 
ase where
B2 (x, y) = A (x, y)C (x, y) (2.2)16
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al and Computer Engineeringfor all x and y the equation is 
alled paraboli
. An example is the 1-D heat equationwith B = C = 0

∂T (x, t)

∂t
=

k

Cρ

∂2T (x, t)

∂x2
(2.3)where T represents the heat potential, k represents the thermal 
ondu
tivity, C rep-resents the spe
i�
 heat 
apa
ity and ρ is the material density.When B2 > AC for all x and y, the equation is 
alled hyperboli
. An examplewith B = 0 and AC < 0 is the 2-D wave equation

∂ψ2 (x, y, t)

∂x2
+
∂ψ2 (x, y, t)

∂y2
=

1

c2
∂2ψ (x, y, t)

∂t2
(2.4)where ψ is the wave displa
ement in the media, and c is the propagation speed.When AC > B2 for all x and y, the equation is ellipti
. An example is Lapla
e'sequation

∂U2 (x, t)

∂x2
+
∂U2 (x, t)

∂y2
= 0 (2.5)where U might represent ele
tri
al potential within a stati
 �eld.A 
olle
tion of examples of these fundamental problem types and typi
al solutionsin one and two dimensions will be presented in Chapter 4.2.1.2 Simulation Problems of Interest to the MNRThe M
Master Nu
lear Rea
tor is a pool type rea
tor used for resear
h and isotopeprodu
tion purposes. It uses non pressurized light water as a moderator and 
oolantand enri
hed uranium as a fuel sour
e. Fuel assemblies are about 1 meter in length,are expensive to a
quire and expensive to dispose of. A rea
tor 
ore, like the MNR's,17
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an load about 30 fuel assemblies at a time in a re
tangular array, and 
onsumes about6 
omplete assemblies during the 
ourse of the year operating at about 2 megawatts.The rea
tor operates 5 days per week 16 hours per day.The positioning of the fuel assemblies determines how e�
iently the uranium fuelis used. E�
ient loading of fuel leads dire
tly to 
ost savings for the rea
tor. Costsavings 
an potentially be on the order of $100,000 per year for the MNR even foronly a small improvement in the 
ore arrangement. Finding an optimal 
ore designis a non trivial problem, and is potentially intra
table if approa
hed in a brute for
eway [129℄.The MNR uses the radiation produ
ed by the 
ore for both a
ademi
 and 
ommer-
ial appli
ations. Simulation models are essential to understand the 
ore's behaviorsin
e there is no 
omprehensive way to measure the radiation density at all points inthe 
ore.Classi
al rea
tor 
ore studies often make assumptions about whi
h pro
esses toin
lude and whi
h pro
esses to negle
t. Usually these de
isions are made to keepproblems tra
table by limiting the geometry, dimensionality, number of tightly 
oupledpro
esses, or the time domain over whi
h the model applies. There are no models atthe MNR whi
h 
ombine �uid �ow and neutron �ux in a detailed way, and there areno transient models whi
h 
apture the motion of 
ontrol rods or fuel assemblies.Current tools in
lude CATHENA [40, 75℄, a numeri
al modeling tool designed forCANDU rea
tors. CATHENA analyzes a thermal hydrauli
 system at a 
oarse level,that of pipe length, valve, and grossly segmented 
ore. CATHENA has been usedmainly for steady-state 
al
ulations at MNR, e.g. temperature distributions withinthe fuel, 
lad, and 
oolant under operating 
onditions. Some transient work has beendone with this 
ode [69℄. RELAP [146℄ and RETRAN [2, 61, 126℄ are related toolsused in the US for power rea
tors. 18
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al and Computer EngineeringMCNP [35, 145℄ is a steady state neutron transport tool whi
h works by tra
kingindividual neutrons, this allows for very �ne details to be modeled. Neutron transportis 
omputed in based on Monte-Carlo models, MCNP simulations are limited to steadystate and require prohibitive amounts of 
omputational resour
es. Material interfa
es
an be examined, and arbitrary 
ore geometries 
an be designed. MCNP is sometimes
oupled with a fuel management 
ode su
h as 3DDT or REBUS.WIMS [101, 111, 170℄ is a deterministi
 transport model used for the estimationof material 
ross se
tions. It provides a bridge between the theoreti
ally pre
isebut 
omputationally expensive transport simulations and the more 
omputationallye�
ient, but more approximate di�usion based simulations. WIMS solves the neutrontransport equation for some given segment of geometry, for example a fuel assembly(in 1D or 2D) and then homogenizes the solution, 
ollapsing the energy groups, sothat the result is then representative of the entire 
ell. The results are the detailed�ux and power distributions within the 
ell, although the main result of interest arethe homogenized 
onstants.3DDT and REBUS are deterministi
 di�usion theory 
odes able to solve three di-mensional steady state 
ore models, and some transient models related to the burningof fuel. Sin
e they are di�usion-theory based they 
an not handle detailed heterogene-ity of materials.Additional simulation 
odes are dis
ussed in arti
les by [16, 27, 92, 93, 132, 178℄.2.1.3 Di�usion Methods for Rea
tor Kineti
sSin
e the prin
iple 
ase study presented in Chapter 5 fo
uses on a rea
tivity inser-tion in
ident des
ribed in [69℄ some extra attention is devoted to the neutron dif-fusion equation. The neutron population at a point (
~r, E, Ω̂, t

) is 
hara
terized by19
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n

(
~r, E, Ω̂, t

)
dV dEdΩ̂, the number of neutrons at time t in volume element dV sur-rounding the point ~r and in energy band dE about E moving in dire
tion Ω̂ in solidangle dΩ̂. The neutron energy is 
hara
terized as a velo
ity v when multiplied by a
ross se
tion term to 
ompute a rea
tion rate. In most 
ases the neutron populationis so large (typi
ally, ~108 neutrons/
m3) that the neutrons 
an be treated as a 
on-tinuum. At the same time the density of neutrons is so low 
ompared to the atomi
density of the medium that neutron-neutron intera
tions 
an be ignored. While mi-grating in a rea
tor 
ore the neutrons intera
t with nu
lei of the 
ore materials untilthey are either absorbed or leak out. The neutron-nu
lear intera
tions are often 
har-a
terized by the ma
ros
opi
 
ross se
tion Σα whi
h spe
i�es the probability per unitdistan
e of travel that a neutron will su�er a 
ollision leading to a rea
tion of type α(where α 
ould represent absorption 'a', �ssion 'f', s
attering 's', et
.).The neutron transport equation [53, 153℄ is essentially an expression of 
onserva-tion for the the neutron density within an arbitrary volume V about r̂. The rate of
hange of neutron density with respe
t to time is equal to the sum of all lo
al sour
esand sinks of neutrons within a volume V .

20
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tri
al and Computer EngineeringNeutron populations 
an be des
ribed very pre
isely by the neutron transportequation as
∂n
∂t

= −∇ · Ω̂vn− vΣt (r̂, E)n
(
~r, E, Ω̂, t

)+
∫
4π
dΩ̂′

∫ ∞

0
dE ′

[
v (E ′)Σs

(
r̂, E ′ → E, Ω̂′ → Ω̂

)
n

(
~r, E, Ω̂, t

)]
+

s
(
~r, E, Ω̂, t

)
(2.6)Where

−∇ · Ω̂ neutron transport into and out of 
ontrol volume
Σt (r̂, E) probability that a neutron will su�er a 
ollision

Σs

(
r̂, E ′ → E, Ω̂′ → Ω̂

) probability that a neutron will 
hange energy level
s
(
~r, E, Ω̂, t

) sour
es in
luding �ssionAlthough neutron transport theory provides the most exa
t des
ription of the neu-tron behaviour in a rea
tor, modeling the neutron kineti
s in the framework of thetransport theory would be prohibitively expensive. Multi-group di�usion theory is anapproximation to the neutron transport pro
ess. It has been found to be adequatefor many rea
tor analysis problems of pra
ti
al interest. Multi-group di�usion the-ory, while simpler than transport, theory 
an also present a host of di�
ulties. Ifapproa
hed in a naive way problems derived from di�usion theory 
an be intra
table.Multi-group neutron di�usion theory uses a variety of approximations to modelthe 
ontinuous terms of the neutron transport equation. Multi-group di�usion, as thename implies, makes two signi�
ant simpli�
ations to the transport model. The �rstis treating the 
ontinuous energy integral term ∫ ∞

0
dE ′ as a dis
rete spa
e, usuallywith a small number of divisions. The se
ond important simpli�
ation is droppingthe angular dependen
e term ∫

4π
dΩ̂′ by assuming that s
attering is for the most partanisotropi
. The velo
ity and neutron population terms, nv, are normally lumped21
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alled �ux symbolized as φ for 
onvenien
e.Neutron �ux is perhaps an unfortunate name sin
e in other dis
iplines �ux is a generi
term for the transport of material from one region to another. In the 
ase of theneutron di�usion problem the �ow of neutrons from one region to another is 
alledneutron 
urrent.The multi-group transient neutron di�usion equation is 
lassi�ed as a paraboli
equation and is written as
1

vg

∂φg

∂t
= ▽ · Dg ▽ φg − ΣRgφg +

G∑

g′=1,,g′ 6=g

ΣSg′gφg′ + Sg (2.7)Where
g the dis
retized energy group #, 1 being the most energeti

D the di�usion 
onstant 
hara
terizing the material intera
tion rate

ΣR the removal 
ross se
tion
ΣSg′g s
attering 
ross se
tion from group g' to g
Sg sour
e termThe sour
e term Sg is 
omposed of several additional terms in
luding both promptneutrons whi
h are the result of a �ssion event and delayed neutrons whi
h appearwith an appre
iable delay from the de
ay of 
ertain �ssion produ
ts.The sour
e term 
an be written as

Sg = (1 − β)χg

G∑

g′=1

νΣfg′φg′ + χD
g

6∑

i=1

λiCi + sg (2.8)
∂Ci

∂t
= λi + βi

G∑

g′=1

νΣfg′φi (2.9)22
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χ the prompt �ssion spe
trum

Σf the �ssion 
ross se
tion
χD the delayed neutron �ssion spe
trum
λ the de
ay rate of the pre
ursor group
C the delayed pre
ursor 
on
entration
β the relative yield of ea
h delayed pre
ursor group
sg sour
e term independent of the �ssion pro
essThe transient problem 
an be transformed into an eigenvalue problem by settingthe derivative with respe
t to time, ∂φg

∂t
, equal to zero. This version is 
lassi�ed as anellipti
 problem and is written as

−▽ ·Dg ▽ φg + ΣRgφg −
G∑

g′=1,g′ 6=g

ΣSg′gφg′ =
1

k
χg

G∑

g′=1

νΣfg′φg′ (2.10)where λ = 1
k
is the eigenvalue of the system. For the steady state 
ase all the highermoments de
ay and only the �rst fundamental mode remains. Designing a rea
torwhi
h maintains a steady state is a non-trivial task. Under long time behaviour theremay be multiple eigenpair solutions. Higher frequen
y solutions to the �ux shapeoften 
orrespond with larger eigenvalues, and de
ay rapidly in time. These values of

λn are known as the time eigenvalues of the equation, sin
e they 
hara
terize the timede
ay. Solutions to the transient neutron di�usion equation are always dominated bysome exponential terms. Transient solutions tend to grow very rapidly or de
ay veryqui
kly.Few group di�usion equations (of 2 - 8 energy groups for thermal rea
tors and15 - 20 for fast rea
tors) with six pre
ursor equations are often 
onsidered to be an23
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s in a nu
lear rea
tor. In order to solve for theneutron group �uxes in spa
e and time, the system of PDEs for the group �uxes andpre
ursor 
on
entrations must be dis
retized in spa
e and time.Finite di�eren
e methods are the simplest and most dire
t approa
h to the solutionof any spa
e-time problems. The method 
onsists of repla
ing the spatial derivativein the neutron kineti
s equation by the 
orresponding �nite di�eren
e approximation.The rea
tor 
ore volume is partitioned into a number of sub-regions. In ea
h region,the material properties are spatially averaged and hen
e are assumed to be uniform.Either 
ell 
entered or vertex 
entered dis
retizations 
an be used. Cell-
entereddis
retizations de�ne the unknowns (group �uxes and pre
ursor 
on
entrations) withina typi
ally square region whi
h is used as the basis of the integration volume.Neutron di�usion problems are dis
ussed again at the end of Chapter 4 andthroughout Chapter 5. This presentation of the neutron di�usion problem omitsmany details. A rigorous derivation of the neutron di�usion equation from the trans-port equation, as well as a dis
ussion of the delayed pre
ursor e�e
ts on transients,and a variety of 
losed form analyti
al problems are presented in the 
lassi
al text byDuderstadt and Hamilton [53℄.2.2 Mathemati
al Te
hniquesThe MOOSE is implemented so that the model designer retains 
ontrol of a varietyof model design details. This se
tion will dis
uss some of the ba
kground behind themathemati
al tools built into the MOOSE and will also dis
uss some of the dis
retiza-tion and integration te
hniques whi
h the MOOSE makes available to the user.
24
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tral Solution Te
hniquesA few 
entral algorithms are presented in the following se
tions however the fo
usis pla
ed on a dis
ussion of the properties of the methods and their performan
e
hara
teristi
s. None of these methods are implemented within the MOOSE, theMOOSE instead relies on third party implementations of linear solvers. The rationalebehind why 
ertain methods are preferred to others is the fo
us of this se
tion. Thetwo most important 
hara
teristi
s for sele
ting a method were whether it was ableto solve matrix forms whi
h 
orresponded with the problems fo
used on in the 
asestudy, and whether the implementation was su�
iently e�
ient. The implementationof these methods are des
ribed in [21, 140℄.Iterative solution methods are 
ommonly used for the solution of systems of PDEsfor a variety of reasons. Usually they have signi�
antly less memory overhead thantheir dire
t 
ounter parts, and for some 
ases they 
an be very easy to implement.In situations where iterative methods are being used to solve a sequen
e of similarproblems the solution from the most re
ent problem 
an be used as the pre
onditionerfor the next problem.Systems are 
ategorized by general properties like symmetry, positive de�niteness,
ondition number, and size. Solution methods are 
onstrained by available ma
hinememory, desired a

ura
y of 
al
ulation, available time, hardware and software pa
k-ages. Several solver te
hniques are dis
ussed in
luding Ja
obi's method, su

essiveover-relaxation, 
onjugate gradient, bi
onjugant gradient, bi
onjugant gradient stabi-lized and Chebyshev iterations.A matrix is symmetri
 when AT = A , or alternatively when aij = aji ∀i, j .Symmetry is important and ne
essary for many of the simpler more e�
ient solvers,most notably the 
onjugate gradient method. Symmetri
 matri
es have the additional25



PhD thesis D. Gilbert M
Master - Ele
tri
al and Computer Engineeringadvantage that only half of the matrix information needs to be stored.A matrix is 
onsidered to be positive de�nite if xTAx ≥ 0 ∀x. The 
onjugategradient method attempts to minimize the value of (
x(i) − x̂

)
A

(
x(i) − x̂

), where x(i)is the ith estimate of the exa
t value x̂, of the equation Ax = b. The minimumis guaranteed to exist only if A is symmetri
 positive de�nite. The ve
tor x(i) is
onstru
ted from a sequen
e of orthogonal residual ve
tors as de�ned by the 
onjugategradient algorithm. Conjugate gradient is e�
ient with memory be
ause it only needsto maintain 2 ve
tors x(i) and r(i), the algorithm requires only the su

essive updateof ea
h of these.An iterative method is stated most generally as
x(k+1) = Bxk + c (2.11)If the matrix B is 
onvergent then the method will 
onverge. B is a 
onvergentmatrix if and only if the spe
tral radius of B is less than 1, where the spe
tral radiusis de�ned as ρ (B) = max {|λi| , i = 1, ..., n} and λ1...λn are the eigenvalues of B.Sin
e ρ (B) ≤ ‖B‖ a straightforward way to de
ide if B is 
onvergent or not is to lookat its row-sum or 
olumn-sum norm and see if it is less than 1. Note that if ‖B‖ ≥ 1this does not imply ρ (B) ≥ 1, and that the B matrix may be a 
omplex part of abla
k box algorithm and so may not be readily available.For the 
onjugate gradient type spe
tral methods the spe
tral 
ondition numberis the main measure of the rate of 
onvergen
e. The 
ondition number of a matrix

B is de�ned to be κ2 (B) = λmax (B) /λmin (B). The number of iterations to a
hieveand error ǫ is proportional to √
κ2. Some spe
ial 
ases o

ur, for example; ellipti
se
ond order PDEs typi
ally give rise to 
oe�
ient matri
es A with κ2 (A) = O (h−2),independent of the order of the �nite elements or di�eren
es used, and of the number26
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e dimensions in the problem. For linear systems derived from PDEs in 2D, the
ondition number is proportional to the number of unknowns.If the extremal eigenvalues of the matrix are well separated the 
onvergen
e in-
reases with ea
h iteration. The 
onjugate gradient algorithm tends to eliminate
omponents of the error in the dire
tion of eigenve
tors asso
iated with extremaleigenvalues �rst. After these are eliminated 
onjugate gradient pro
eeds as thoughthese eigenvalues did not exist. The 
onjugate gradient algorithm is a fundamentalspe
tral te
hnique, the algorithm is presented in Appendix 1. Other methods likeGMRES (Generalized Minimal Residual) and BiCG (Bi-Conjugate Gradient) addressproblems whi
h require the solution of non-symmetri
 matri
es.GMRES 
onstru
ts a series of residual ve
tors and is guaranteed to 
onverge after
n steps where n, is the number of variables in the system. GMRES must retain inter-mediate 
al
ulations for ea
h step, so that as n grows large, the storage requirementsbe
ome prohibitive. The usual strategy is to restart GMRES every m steps. Duringthe restart 
y
le all of the a

umulated information is dis
arded and the 
urrent esti-mate is used as the new starting point. Until GMRES is restarted the work asso
iatedwith it grows linearly with ea
h a

umulated ve
tor.BiCG uses two orthogonal sequen
es to deal with matri
es whi
h are not symmet-ri
. If it is applied to a symmetri
 positive de�nite system then it will 
onverge at thesame rate as 
onjugate gradient, although it will require twi
e the amount of work.Sometimes BiCG 
onverges in an irregular way, and 
onvergen
e 
an in fa
t breakdown for some matri
es.Chebyshev Iteration's 
onvergen
e rate depends on the estimate of the extremaleigenvalues. If a good estimate is used, and the matrix is symmetri
 positive de�nite,then Chebyshev will 
onverge as fast as CG. If poor estimates of the eigenvalues aremade then Chebyshev Iteration 
an 
onverge very slowly or diverge in some 
ases.27



PhD thesis D. Gilbert M
Master - Ele
tri
al and Computer EngineeringSolver Sym Positive Iterations needed Operations/ memoryDe�nite for 
onvergen
e Iteration 
onsumptionJa
obi No Yes slow ∼ n w ∗ n (w + 3) ∗ nSOR No Yes GS/10 (w + 1) ∗ n (w + 2) ∗ nCG Yes Yes √
κ2 (w + 5) ∗ n (w + 6) ∗ nGMRES No No depends on m (w + 2 ∗ i + 2) ∗ n (w + i + 5) ∗ nBiCG No No ≥2*CG, unstable (w + 7) ∗ n (w + 10) ∗ nBiCGSTAB No No CGS, stable (2 ∗ w + 10) ∗ n (w + 10) ∗ nChebyshev It. No No CG ⇀eigen est. (w + 1) ∗ n + λest (w + 5) ∗ nTable 2.1: A Summary of Spe
tral Method Performan
e Chara
teristi
sThe number of iterations to 
onverge is a fun
tion of whi
h algorithm, or mathe-mati
al method is used to solve a system. The 
ost of ea
h iteration of that algorithmis dependent on pre
isely how the algorithm is implemented, (i.e. how many addi-tions/ multipli
ations are required). The performan
e of several iterative methods issummarized in Table 2.1, this information is taken from [21℄.All of the iterative methods involve ve
tor sums, s
alar-ve
tor produ
ts, innerprodu
ts, ve
tor-matrix produ
ts, but no matrix matrix produ
ts. SAXPY is anoperation where a s
alar ve
tor produ
t is 
omputed along side a ve
tor sum as

z = αx+ y.Memory 
onsumption is related to the number of intermediate ve
tors that themethod stores. Ea
h method must store the entire sparse matrix, so usually the mem-ory 
onsumption required to do this will dominate the total memory 
onsumption.Matrix storage is presented in Table 2.1 as the row width times the number of ele-ments w ∗ n. There are a variety of storage s
hemes for sparse matri
es so this �gureis given as an estimate.The linear multi-grid method [180℄ 
an be an extremely fast solution te
hnique.Its implementation diverges quite radi
ally from the previously des
ribed iterativemethods be
ause it requires multiple problem representations. Although not used in28
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ently by [117℄, and so is des
ribed in Appendix 1.Multi-grid methods should not be 
onfused with 
omposite grid te
hniques pre-sented in the subsequent se
tions. The multi-grid method is an iterative solutionte
hnique whi
h provides ex
ellent performan
e and good parallelization 
hara
ter-isti
s for ellipti
 problems. In 
ontrast 
omposite grid te
hniques are solely for thepurpose of building an appropriate spatial dis
retization for a problem. Compositegrid te
hniques 
an be used to fo
us 
omputational resour
es on a 
ertain segmentof the geometry, or they 
an allow se
tions of the geometry to move relative to oneanother as will be the main fo
us in later 
hapters. Composite grid te
hniques arenot tied to any parti
ular solver, likewise multi-grid methods do not ne
essarily implyany parti
ular geometri
 interpretation of a problem. In prin
iple the two te
hniques
an be 
ombined, although this was not attempted as part of this thesis.The GMRES method was the preferred iterative solver used in later 
hapters ofthis thesis for its good 
onvergen
e rate and reasonable memory 
onsumption. Theproblem formulations 
onstru
ted by the MOOSE are often not symmetri
, so thisprevented the use of the 
onjugate gradient algorithm.Other Te
hniquesThere are a wide variety of important linear solution te
hniques whi
h go beyond thes
ope of this 
hapter.Sparse dire
t methods are able to solve linear systems without resorting to iterativete
hniques. Sparse dire
t methods have properties similar to standard dense matrixsolution te
hniques like Gaussian elimination or LU de
omposition while still takingadvantage of matrix representations whi
h do not expli
itly represent all of the zerosin the system. They generate solutions in a �xed number of steps, whi
h in some29
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ases are more pre
ise than their iterative 
ounterparts. Sparse dire
t methods havethe disadvantage that they tend to 
onsume more memory than iterative methodsand they 
an also be very di�
ult to implement. Re
ent implementations of dire
tmethods are dis
ussed by [10, 48℄.Parallelization of iterative te
hniques is a

omplished by segmenting solution ve
-tors either by the solution ve
tor's indi
es, or through partitioning whi
h is optimizedbased on the geometri
 referen
es that ea
h entry makes. As already mentioned theJa
obi method requires many thousands of iterations to a
hieve the same a

ura
yon a well 
onditioned matrix as the 
onjugate gradient method, but ea
h iteration isvery 
heap, and parallelization of the Ja
obi method is trivial, where as paralleliza-tion of the 
onjugate gradient method is not trivial. The sele
tion 
riteria whi
h isused to 
hoose an algorithm for a single CPU problem may not be the same as the
riteria used to 
hoose a parallel implementation. Parallel linear solution tools andte
hniques are presented brie�y in [21, 49℄, with spe
i�
 referen
e to neutron di�usionby [7, 14, 15, 61, 120, 142, 146, 147, 155℄.2.2.2 Eigenvalue Cal
ulation Te
hniquesThe standard eigenvalue problem [17, 78℄ is formulated as
Ax = λx (2.12)A non-trivial solution for λ and x is sought where λ is a s
alar, x ∈ Cn and

A ∈ Cn×n. Problems whi
h involve 
omplex numbers have not been addressed by theMOOSE, while they are in
luded within the 
omplete domain of eigenvalue problemsthe MOOSE was developed with a more restri
ted set of target problems in mind.The general eigenvalue problem also in
ludes a se
ond square matrix B whi
h has30
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Ax = λBx (2.13)This problem is often solved by reformulating it in standard form. If B is non-singular then the problem 
an be rewritten as B−1Ax = λx. If B is singular, whi
h isrelevant to the nu
lear di�usion problem, then slightly more 
omplex reformulationsare ne
essary. If the problems are large and sparse then some of the issues of 
on
ernto linear problem solvers are also relevant to the eigenvalue problem.Many methods have been proposed to 
ompute eigenvalues and eigenve
tors forlarge spares matri
es. Methods like QR iteration are not appropriate for large sparsematri
es be
ause they are based on modifying the matrix by 
ertain similarity trans-formations whi
h destroy sparsity [79℄. Many eigenvalue appli
ations only require afew sele
ted eigenvalues and not the entire spe
trum.Methods for sparse eigenproblems usually obtain the solution from the informationgenerated by the appli
ation of the matrix to various ve
tors. Matri
es are onlyinvolved in matrix-ve
tor produ
ts. This not only preserves sparsity but also allowsthe solution of problem in whi
h matri
es are not available expli
itly.The maximum eigenvalue 
an be estimated in a variety of ways, the power method
omputes a series of approximations of eigenve
tors and eigenvalues and is de�nediteratively as
x̂ = Ax(k−1) (2.14)

x(k) = x̂(k)/max
(
x̂

(k)
i

) (2.15)31
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x(0) is usually 
hosen with random entries, the algorithm is repeated until x(k) 
on-verges. As k → ∞ max

(
x̂

(k)
i

)
→ λmax, and x(k) →the asso
iated eigenve
tor. This
onvergen
e takes pla
e at a rate proportional to λmax/λmin. If the power method isused for a few iterations to generate a �rst approximation to x(k) then by using theRayleigh quotient, de�ned as

Rq =
xTAx

xTx
(2.16)an estimate of the eigenvalue asso
iated with x(k) 
an be 
omputed. An iterativemethod for �nding the eigenvalue, eigenve
tor pair, whi
h 
onverges faster than thepower method 
an be 
onstru
ted based on the Rayleigh quotient.Subspa
e iteration is a generalization of the power method in whi
h the matrix isapplied to a set of m ve
tors simultaneously, and orthogonality is enfor
ed expli
itlyto avoid the 
onvergen
e of all the ve
tors toward the same eigenve
tor. A proje
tionte
hnique is often used to 
ompute approximations to the eigenpairs of matrix A,extra
ting them from a given low dimensional subspa
e on whi
h the problem isproje
ted. The proje
tion s
heme is 
ommon to many other methods. The Krylovmethods use a proje
tion onto a Krylov subspa
e.The most basi
 algorithms Krylov subspa
e method for �nding eigenvalues is theLan
zos method. The Lan
zos algorithm needs to a

ess the matrix only in the form ofmatrix-ve
tor operation, similar to the linear spe
tral solution methods. The Lan
zosalgorithm is presented in Appendix 1.The Arnoldi algorithm [79, 80, 81℄ 
an be used for non-symmetri
 problems. It
omputes approximations of invariant subspa
es from Krylov subspa
es of in
reasingsize. During the 
ourse of the algorithm ve
tors are a

umulated whi
h will tendto 
onsume large amounts of memory. These algorithms are often restarted when a32
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hed. The Krylov-S
hur [152℄ algorithm represents an improvementon the Arnoldi algorithm whi
h uses a more re�ned restarting strategy.A variety of numeri
al details must be addressed when implementing Krylov sub-spa
e algorithms. A s
heme must be 
hosen for 
onstru
ting a basis. The te
hniquesele
ted will have an impa
t on round-o� errors. Lo
king already 
onverge eigenvalues
an 
onsiderably redu
e the 
ost of an algorithm.Convergen
e problems 
an arise in the presen
e of 
lustered eigenvalues. A

eler-ation te
hniques 
onsist of 
omputing eigenpairs of a transformed problem and thenre
overing the solution of the original problem. The most 
ommonly used spe
traltransformation is 
alled the shift-and-invert. The value of the shift, σ, is 
hosen sothat the eigenvalues of interest are well separated in the transformed spe
trum. Thea
tual problem solved is
(A− σB)−1Bx = θx (2.17)This transformation is e�e
tive for �nding eigenvalues near σ sin
e the eigenvalues

θ of the operator that are largest in magnitude 
orrespond to the eigenvalues λ of theoriginal problem that are 
losest to the shift σ in absolute value. This transformationis also e�e
tive in that it 
an be used to avoid inverting a singular matrix. Therelationship between the eigenvalues of both problems is
θ = 1/ (λ− σ) (2.18)A linear system of equations must be solved whenever a matrix inversion appearsin the algorithm, sin
e dire
tly inverting the matrix would destroy the sparsity of theproblem. That is to say that when a produ
t of the form33
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y = A−1x (2.19)appears rather than inverting A and multiplying this result by x what is done insteadis the problem is reformulated as
Ay = x (2.20)where x is known then y 
an be solved for using any of the already des
ribed methods.This is an important detail sin
e the 
ost of �nding an eigenvalue for the generaleigenvalue problem may be dominated by the 
ost of the algorithm whi
h solvesthe inverted system. Either an iterative s
heme or a dire
t s
heme may be used to
ompute this result. Using a spe
tral transformation like the shift and invert willtend to redu
e the number of steps in the eigenvalue 
al
ulation routine, although the
ost is quite high sin
e ea
h step will require a matrix inversion a

omplished via thesolution of a linear system. SLEP
 handles this detail automati
ally, this is part ofwhat makes it so attra
tive.2.2.3 Transient Integration Te
hniquesThe MOOSE provides the ne
essary building blo
ks to assemble well understood and
ommonly used integration methods [70, 76, 172℄. This se
tion will present a briefoverview of the theory behind integrating PDEs over time. Several methods will bepresented in
luding Euler's method, the trapezoid method, Runge-Kutta's method,multi-step methods and multi-value methods.Two basi
 problems present themselves. The integration te
hnique must be 
hosen,and the size of the time step must be 
hosen. Higher order integration methodsmay be more pre
ise than lower order methods, but ea
h step will typi
ally be more34
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ompute. A sequen
e of small steps may produ
e a reasonably pre
isesolution with any integration method, but if the problem is 
omplex enough the totalnumber of steps required for a simple method may make the 
al
ulation impossible.Expli
it methods, while attra
tive for their simpli
ity of implementation, may exhibitstability problems whi
h 
an be avoided by their more expensive to 
ompute impli
itversions.Sti� systems are those whi
h are 
hara
terized by tightly 
oupled pro
esses whi
hrepresent both very fast and very slow moving phenomena. Solving sti� systemspresents additional 
omplexities be
ause if one is for
ed to 
hoose step size based onthe fastest moving terms in the system an overall solution may be di�
ult to derive.Some spe
ial 
onsiderations for the handling of sti� systems will be presented.
y

t

h

Figure 2.1: Integrating a basi
 ODEFor simpli
ity this se
tion will fo
us on ODEs. The prin
iples of integrating PDEsare similar, and in many 
ases the same formulations 
an be used. As illustratedin Figure 2.1 a fun
tion y is integrated with respe
t to t using dis
rete steps h. Aninitial point, y0 is usually known, and the derivatives of y are also known, they maybe dependent on both y and t.In later 
hapters these te
hniques are used by the MOOSE framework to solveseveral transient problems. In Chapter 4, the framework is tested using both Euler's35



PhD thesis D. Gilbert M
Master - Ele
tri
al and Computer Engineeringexpli
it method and the semi-impli
it trapezoid method. In Chapter 5 a third ordermulti-value method using sti�y-stable 
oe�
ients is used as part of the major 
asestudy. All the te
hniques dis
ussed in this se
tion 
an be used to spe
ify solution PDEsfor the MOOSE. Impli
it methods require the appli
ation of one of the linear solversdes
ribed in the previous se
tion to handle the large sets of simultaneous equationswhi
h often result from de�ning a system in terms of an impli
it formulation. Animpli
it solution requires a rather intimate understanding of the problem at handand so pre
ludes the use of many pre-existing solution libraries. To develop a basi
appre
iation of these issues, a brief summary of integration te
hniques is presented.Euler's Expli
it Method
yn+1 = yn + h · dy

dt

∣∣∣∣
n

(2.21)Euler's method is a �rst order method. It is simple to program, numeri
ally unsta-ble, and 
an violate the Courant Friedri
h Lewy (CFL) 
ondition. The CFL 
onditionis relevant in multidimensional simulations and relates the speed of propagation ofthe numeri
 solution in spa
e with its speed of propagation in time. Euler's methodsare usually dis
ussed for pedagogi
al reasons they are rarely used in pra
ti
e.Impli
it Euler
yn+1 = yn + h · dy

dt

∣∣∣∣
n+1

(2.22)The method is impli
it sin
e it requires dy
dt

∣∣
n+1

to 
ompute yn+1. Sin
e knowledgeof dy
dt

∣∣
n+1

in prin
iple requires knowing yn+1 �nding a solution for an impli
it methodwill tend to be 
omplex and require the use of a �xed point solver or some otherte
hnique for solving simultaneous equations. Impli
it formulas are always mu
h36
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it 
ounterparts. The impli
it version ofEuler's method is 
ompletely numeri
ally stable whi
h means that it is possible totake large steps with the method and 
ompute solutions that will not grow withoutbound.For PDEs, impli
it methods 
an be more stable than expli
it methods for reasonsrelated to their dimensionality. Consider the illustration in �gure 2.2. The point
φ(xj, tk) when 
omputed expli
itly under a �nite di�eren
e s
heme 
an only be underthe in�uen
e of the larger points in the triangle, those whi
h pre
ede it in time. Ifthe phenomena being studied propagates through spa
e faster than the simulation isallowed to evolve in time then the CFL 
ondition may be broken and the simulationmay be
ome unstable.

φ (x ,t )
j k

x

t

Figure 2.2: S
hemati
 Illustration of the Limits of Expli
it MethodsThe CFL 
ondition 
an be written formally as a relationship between the speedof the propagating phenomena in spa
e c, the spa
e between grid points ∆x, and thesize of the time step h as11Taken from [76℄. 37
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h ≤ △x√

c
(2.23)where it should be noted that stability does not ne
essarily imply a

ura
y. Forpra
ti
al purposes a step size many times smaller than that required by the CFL maybe needed to 
ompute a meaningful solution to the problem. While the impli
it versionof Euler's method guarantees stability, stability alone is not a su�
ient 
ondition foran a

urate solution. Improved a

ura
y 
an be a
hieved through the use of higherorder integration methods.Trapezoid

yn+1 = yn + h ·
(
dy

dt

∣∣∣∣
n

+
dy

dt

∣∣∣∣
n+1

)
/2 (2.24)The trapezoid method is a se
ond order semi-impli
it method. It is also sometimes
alled the Crank Ni
holson method. It requires dy

dt

∣∣
n+1

to 
ompute yn+1. Be
ause itis a semi-impli
it method it 
annot take steps as large as the impli
it Euler method,however sin
e it is se
ond order a

urate the steps that it does take are mu
h morepre
ise.Runge-KuttaThe Runge-Kutta methods use derivatives 
omputed at a variety of positions. Whilepreviously it was 
onvenient to write dy
dt

∣∣
n
to represent the �rst derivative of y 
om-puted at the position (tn, yn), for Runge-Kutta methods the derivative dy

dt

∣∣
(tn,yn)

iswritten as f(tn, yn) so that 
omplex expressions 
an be used for t and for y.
k0 = f(tn, yn)38
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k1 = f(tn + h/2, yn +

h

2
k0)

k2 = f(tn + h/2, yn +
h

2
k1)

k3 = f(tn + h, yn + hk2)

yn+1 = yn +
h

6
(k0 + 2k1 + 2k2 + k3) (2.25)Runge-Kutta methods have a variety of formulations. The above representationis a 
ommon implementation, it is fourth order a

urate and expli
it so ea
h step isvery inexpensive to 
ompute. A drawba
k of this method is that ea
h step requiresseveral 
al
ulations for dy

dt
at points de�ned by the parti
ular implementation. Runge-Kutta methods are appropriate when an expression exists for the 
al
ulation of the�rst derivative whi
h 
an be evaluated independently of the solution being solved for.Impli
it Runge-KuttaThe impli
it Runge-Kutta methods also have multiple possible de�nitions. Here ageneral form for a two stage impli
it Runge-Kutta is de�ned in terms of several 
on-stants, α, β, and γ. The details of this method are dis
ussed by [70℄.

k1 = f (tn + α1h, yn + hβ11k1 + hβ12k2)39
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k2 = f (tn + αnh, yn + hβ21k1 + hβ22k2)

yn+1 = yn + γ1hk1 + γ2hk2 (2.26)Impli
it Runge-Kutta has better stability 
hara
teristi
s than expli
it Runge-Kutta, although Impli
it Runge-Kutta methods are used less frequently. Like theother impli
it methods it is more expensive to 
ompute than its expli
it version, andlike the expli
it Runge-Kutta methods it requires multiple dy
dt
evaluations.Multi-StepMulti-step methods are often expressed using a slightly di�erent notation than theprevious methods, where the �rst derivative of y with respe
t to t at a point k, i.e.

dy
dt

∣∣
k
is written simply as y′k. Time steps are usually stri
tly regimented. A multi-stepmethod normally 
omputes all derivatives from previously known positions in timeand spa
e, indi
ated by the subs
ripts.

yk+1 = yk +
h

24

(
55y′k − 59y′k−1 + 37y′k−2 − 9y′k−3

) (2.27)
yk+1 = yk +

h

24

(
9y′k+1 + 19y′k − 5y′k−1 + y′k−2

) (2.28)Multi-step methods have a variety of implementations mu
h like Runge-Kuttamethods, both expli
it and impli
it methods of various orders 
an be de�ned. Ea
hparti
ular de�nition has its own stability properties and a

ura
y 
hara
teristi
s. The40
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onsidered a se
ond order multi-step method. The aboveimplementation is a fourth order predi
tor 
orre
tor method. Equation 2.27 providesan initial estimate for yk+1, equation 2.28 provides a 
orre
tion. Multi-step methodswork by a

umulating a history of �rst derivatives and using non-linear extrapolationmethods to estimate the next step that they take. Changing step size with multi-stepmethods 
an be di�
ult, and multi-step methods also require some start-up methodto prime their history. If a system starts in steady state then the start-up method
an be as simple as initializing the derivative history with zeros. Sometimes methodswhi
h do not use a history, like the Runge-Kutta methods 
an be used to initialize amulti-step method.Multi-Value MethodsMulti-value methods require the maintenan
e of several variables as part of their
al
ulation. A ve
tor of derivatives of several higher orders is maintained for ea
hstep, 
alled yk, whi
h is 
omputed from a temporary ve
tor of derivatives, 
alled ŷ,and a 
onstant α, also evaluated at ea
h step. In addition the method itself is de�nedby a transformation matrix and ve
tor, 
alled B and r respe
tively. Details of themethod, and various 
hoi
es for B and r are dis
ussed by [70℄.
yk =





yk

hy′k

(h2/2)y′′k

(h3/6)y′′′k





41
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B =





1 1 1 1

1 2 3

1 3

1





ŷk+1 = Byk

α = h(f(tk+1, yk+1) − ŷk+1)

r =





3/8

1

3/4

1/6





yk+1 = ŷk+1 + αr (2.29)Multi-value methods [70℄ are 
omputationally equivalent to multi-step methodsalthough they use a somewhat di�erent te
hnique to represent the problem. Insteadof maintaining a history of individual points, a sequen
e of derivatives is kept at the
urrent point. The advantage that this has over a multi-step method is that it isrelatively easy to 
hange step sizes. The pre
eding example is a 
ommon formulationof a 4th order multi-step integration method. The 
hoi
e of the ve
tor r will have an42
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ura
y and stability of the method. As mentioned in the openingpart of this dis
ussion, some integration problems are 
lassi�ed as sti� and are di�
ultto solve. Several ve
tor 
hoi
es for r are listed in Table 2.2, these are taken from[70℄. De�ning the ve
tor r from the entries in the �rst table will yield a multi-valuemethod with reasonable stability properties, and a high degree of pre
ision. De�ning
r based on the elements listed in the se
ond table provides a method whi
h tradespre
ision for stability. While slightly more steps will be required with the sti�ystable 
oe�
ients, the integration pro
edure is mu
h more likely to 
onverge to a
orre
t result espe
ially if the problem su�ers from a mixture of fast and slow moving
omponents. The results derived in Chapter 5 use the multi-value integration methodwith a third order integration s
heme with 
onstants taken from the sti�y stabletable.degree r[1℄ r[2℄ r[3℄ r[4℄ r[5℄3 5/12 1 1/24 3/8 1 3/4 1/65 251/720 1 11/12 1/3 1/24Multi-Value Coe�
ientsdegree r[1℄ r[2℄ r[3℄ r[4℄ r[5℄3 2/3 1 1/34 6/11 1 6/11 1/115 25/50 1 35/50 10/50 1/50Sti�y Stable Multi-Value Coe�
ientsTable 2.2: Coe�
ients for Multi-Value Methods Ve
tor rStep size sele
tion 
an be a

omplished by a variety of te
hniques. There arespe
ial methods for sele
ting step size for both the multi-step and multi-value methodsbased on 
areful analysis of the properties of those methods. A general te
hniquewhi
h applies to all integration methods is step doubling. A step is 
omputed in two43
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ond estimateof the new value is 
omputed by taking two steps ea
h one half the size of the steptaken in the �rst estimate. The two results are 
ompared, if their di�eren
e is above a
ertain threshold then the step is reje
ted, the step size is redu
ed, and the pro
edureis repeated. If the di�eren
e between the two estimates is below a 
ertain thresholdthen the step size is a

epted, and the step size 
an be in
reased.2.3 Modeling Engineering GeometriesPhysi
s simulations tend to fall into two broad 
ategories in terms of their mappingbetween the physi
al world and the simulated spa
e of the 
omputer. The �rst 
om-mon mapping is based on linked 
omponents. In this simulation design 
omponentsare 
onne
ted in an abstra
t fashion, and the pre
ise position of ea
h simulation ele-ment is not as important as how it is 
onne
ted to its neighbours and the behaviourthat it models. Ele
tri
al 
ir
uits are normally simulated through a 
omponent baseddesign where the behaviour of the overall 
ir
uit is determined by the 
onne
tivity ofindividual 
omponents rather than their pre
ise physi
al position on a 
ir
uit board.The Berkley SPICE simulator is an example of su
h a simulator. Fluid �ow modelswhi
h model a pipe network are also often represented in a 
omponent wise fashionwhere the relative position of the end points of the pipe are of 
on
ern, but the a
tuallo
ation of the pipe in spa
e and its overall shape are unimportant. For example see[119℄.The se
ond 
ommon mapping between simulation elements and physi
al geome-tries is a one to one mapping, where the simulation spa
e is dis
retized and representedby some sort of regular pattern of points whi
h 
an be 
al
ulated on a 
omputer. Thisthesis has fo
used its e�orts on this style of dis
retization. Several meshing te
hniques44
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tion.2.3.1 Mesh Te
hniquesMesh elements 
an take a variety of forms, the simplest two dimensional mesh isa Cartesian square grid. Meshes with regular non-square elements are also possible,hexagonal and triangular elements are also 
ommon. Often the spa
ing of grid lines ina Cartesian mesh is adjusted so that there are more mesh lines in an area of interestto the simulator, typi
ally this requires only a relatively simple adjustment of the
omputational model to a

ount for the unequal spa
ing. If a simple regular mesh
an be applied to a problem this is always preferable. Regular 
onformal meshesfor whi
h ea
h mesh vertex is 
onne
ted only to other mesh verti
es in a simplepredi
table pattern are easy to analyze mathemati
ally and are also easy to programon a 
omputer.If 
omputer resour
es are not limited, or if a problem is not very 
omplex, a simplegrid 
an provide a very e�e
tive solution to a simulation problem. Unfortunately thisis not usually the 
ase. For many problems the simulation features of interest mayonly o

ur in a small lo
alized region within the problem domain and using a simplegrid to mesh the entire domain 
an be very wasteful of 
omputational resour
es. Forother problems it may be ne
essary to 
ompute approximations to 
urved surfa
eswhi
h do not 
onform to simple geometri
 subdivisions. The irregular Cartesian gridpi
tured in Figure 2.3
 
an be used to fo
us in on 
ertain parts of a simulation butthis method also tends to 
reate additional areas of fo
us whi
h are not ne
essarily ofinterest to the modeler.There are a variety of solutions to problems that need either lo
al grid fo
us, orgrid shapes that are well �tted to the exa
t shape of a problem. Several examples45
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(b) hexagonal

(d) triangular

(a) Cartesian

(c) irregular CartesianFigure 2.3: Simple Grid Typesare illustrated in Figure 2.4, see [157, 158℄ for a 
omprehensive dis
ussion. One ofthe most 
ommonly applied solutions in �uid me
hani
s is the use of unstru
turedgrids. An unstru
tured grid uses a 
olle
tion of polygons to �ll in a region, usuallytriangles. The polygons need not be of the same size or in the same orientation.Unstru
tured grids (Figure 2.4a) are very good at representing arbitrary 
urves andunusual geometries and have be
ome the preferred griding mode for �uid dynami
sproblems. Unstru
tured grids are more 
ompli
ated to implement and have largermemory requirements than stru
tured grids, so they are not ne
essarily the best 
hoi
efor all problems.Stru
tured grids need not be simple Cartesian grids, they are often bent to �tsurfa
es and 
an provide ex
ellent approximations to 
urved shapes for 
ertain ap-pli
ations, see Figure 2.4b. In su
h situations 
urved meshes are often assembled to-46
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(a) unstructured (b) boundary fitted structured

(c) overlaid multi−block or chimera (d) patched multi−block Figure 2.4: General Grid Typesgether to 
onstru
t multi-blo
k meshes. The literature on multi-blo
k meshes pointsout that multi-blo
k meshes are also good for modeling moving 
omponents [157℄.The MOOSE uses geometri
ally Cartesian grids and uses individual grids to modelseparate 
omponents, 
urved grids are not implemented. The MOOSE's grids arestru
tured, but need not be 
onformal. A non-
onformal mesh allows for verti
es to
onne
t with grid edges, i.e. in Figure 2.4 examples a) and b) are 
onformal, but 
)and d) are non-
onformal.Two major s
hemes exist for handling the boundaries between 
onne
ted grids.Overlaid multi-blo
k grids, (sometimes 
alled Chimera grids, see Figure 2.4
) useinterpolation to 
ommuni
ate between individual grid stru
tures. A 
ertain degree ofoverlap is required to ensure good 
ommuni
ation between the grids. In the pat
hedgrid s
heme (see Figure 2.4d), grids are nested exa
tly inside of ea
h other, usually47



PhD thesis D. Gilbert M
Master - Ele
tri
al and Computer Engineeringa �nite volume interpretation of the mesh is used where variables are 
onsidered toexist at 
ell 
enters rather than mesh verti
es.The MOOSE uses a pat
hed multi-blo
k grid system to model motion. As dis-
ussed in the next se
tion there are several 
omputational reasons for why this parti
-ular s
heme was 
hosen versus an overlapping grid. The analysis of pat
hed meshesis more dire
t, and provides a variety of simplifying me
hanisms whi
h fa
ilitate the
orre
t linking of grids, as will be illustrated in Chapter 3.2.3.2 Composite Grid MethodsThere is mu
h debate in the literature [154℄ whi
h dis
usses the 
orre
tness of usinginterpolation methods to link overlapping meshes. Conservation is a generi
 physi
alproperty; it often refers to 
onservation of mass, or 
onservation of energy. Poorlydesigned simulations will fail to maintain this general property. In the 
ase of pat
hedmeshes and overlapping meshes it is often the 
ase that the meshing te
hnique is re-sponsible for some small sour
e or sink of energy or material whi
h leads to overallina

ura
ies in the simulation. Some papers [24, 25, 130, 131℄ argue that using in-terpolation of any order will lead to errors indu
ed by the failure to 
onserve the�ow a
ross mesh borders and that mesh overlap should be avoided altogether. Otherpapers argue that under 
ertain 
ir
umstan
es 
onne
ting meshes with higher orderinterpolation methods 
an be su�
iently pre
ise [38, 39, 121℄, up to the order of errorindu
ed by the mesh size. Still other papers [98, 168℄ dis
uss the idea of avoidingthe problem altogether by linking stru
tured mesh elements by unstru
tured partialmeshes or 
lipping overlapping se
tions of meshes to restru
ture the geometry of theproblem. See also [26, 41, 115, 127, 151, 156, 174℄ for additional ba
kground on thisdis
ussion 48
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ussion has taken pla
e in the 
ontext of �uid me
hani
s simula-tions where the goal is usually to model appli
ations of the Naiver Stoke's equationsaround a smoothly 
urving stru
ture. The main motivation in this problem area forusing multiple meshes to build a smooth boundary that represents the surfa
e of some-thing like an airplane wing. Building su
h 
ontours from a 
olle
tion of stru
turedmeshes rather than a single stru
tured mesh or an unstru
tured mesh has a variety ofimplementation advantages whi
h prompted resear
h in this area. Many authors whowork in the nu
lear engineering area re
ognize the potential bene�ts for using eithermoving mesh te
hniques, or adaptive meshes [176, 181, 182℄. To date, few (if any),neutron di�usion proje
ts have been built using either adaptive geometri
 methods,or linked meshes.Linked stru
tured meshes were 
hosen over an unstru
tured mesh for several appli-
ation spe
i�
 reasons related to the modeling of neutron di�usion. Neutron di�usionphysi
s breaks down at the resolution of the neutron's mean free path, or the dis-tan
e that a neutron 
an travel without 
olliding with anything. This distan
e rangesbetween a few 
m, and about 10 
m depending on the 
hara
teristi
s of the rea
torand the model. Di�usion physi
s makes anisotropi
 s
attering assumptions, so notonly do neutrons travel large distan
es without 
ollisions, but when they do 
ollidethe dire
tion of their s
attering is only modeled in a very rough way. Rea
tor 
oredesigns are also often very simple, using either a 
ylindri
al or a re
tangular prism forthe overall geometry. Given the geometri
 approximations employed by neutron dif-fusion physi
s there is no real advantage to be obtained by pre
isely modeling rea
torgeometry with an unstru
tured mesh.The paper by [169℄ presents an example of an unstru
tured mesh solved with a�nite element method used to model a rea
tor. This author uses a transport model tosimulate a 
ylindri
al 
ore rather than a di�usion model so in this 
ase the more 
om-49
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all that transport models do not make anisotropi
s
attering assumptions and pre
isely tra
k the motion of neutrons and their intera
-tions with material interfa
es, the 
ost is usually a mu
h more 
omplex model.An unstru
tured mesh does not ne
essarily provide all the solutions needed bya moving mesh. If a single mesh is 
onstru
ted for a given geometry and pointsare translated only limited motion 
an be modeled. This style of motion may besu�
ient to model the �exing of a bridge or vibrations in an airplane wing, but asdis
ussed by [77℄, for problems whi
h involve large deformations, the mesh 
an easilybe
ome entangled. Even in 
ases where neither twisting nor tangling of the mesh areat issue �nite element methods have 
ertain limitations. The elements are limited inthe shapes that they 
an have, how big they 
an be, and how they 
an be 
onne
ted,whi
h may pla
e limitations on 
omponent motion.Despite these problems with mesh deformation, re-meshing the problem for new
on�gurations is possible. There are also other novel strategies su
h as de�ning 
om-ponents within stru
tured regions and then using an unstru
tured mesh to 
onne
tthose regions, see [98℄.The strategy employed by the MOOSE, of using moving stru
tured pat
hed meshes,should be understood as one possible approa
h, but not the only possible approa
h.Using moving stru
tured pat
hed meshes was preferred partly be
ause it is a
knowl-edged in the nu
lear literature as a possible approa
h by [176℄, and most 
losely followsthe existing dis
ussion of nu
lear simulations. Stru
tured meshes are also simple todeal with, in the third 
hapter where non-
onformal mesh 
onstru
tion issues areaddressed along side arbitrary physi
s, the advantage of limiting the mesh design tosimple linked Cartesian grids be
omes more obvious.
50
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lear Engineering transient models are often implemented using a 
ompromise be-tween standard mesh methods and linked 
omponents. Coarse mesh and nodal meth-ods represent a 
ompromise between expli
itly representing the simulation domain ona �ne mesh whi
h is 
apable of a

urately modeling the geometry of a rea
tor 
ore,and a 
ompletely abstra
t model whi
h links regions whi
h use non-linear modelsto approximate the behaviour of a large se
tion of the rea
tor 
ore. These methodsprovide 
ertain advantages over standard dis
retization methods, but at the 
ost ofrather 
omplex implementation.Coarse mesh methods [153, 109℄ are motivated by the fa
t that in some instan
esa rea
tor may be adequately des
ribed by a model 
onsisting of homogeneous regionsthat are relatively large. A region is de�ned as large when it is greater than thedi�usion length of a neutron, typi
ally on the order of more than 10 
m. While a
oarse mesh may be adequate to des
ribe the geometry, a �nite di�eren
e methodwill require a relatively �ne mesh to maintain a

ura
y. Coarse mesh methods areable to use mesh sizes whi
h are mu
h larger than �nite di�eren
e methods be
ausethey use higher order approximations to the spatial variations of the unknowns withina mesh 
ell. The rational is that although the 
omputational e�ort per mesh 
ell isin
reased, the redu
tion in the number of mesh 
ells results in an overall redu
tion inthe amount of work required to solve the problem.Like 
oarse mesh methods, nodal methods utilize relatively large 
omputationalmesh 
ell to solve multi-dimensional rea
tor problems using signi�
antly less 
om-puter resour
es than the �ne-mesh �nite di�eren
e method. Early nodal methodsrequired a variety of s
hemes to deal with fa
e-averaged partial 
urrents and thenode averaged �uxes. Coupling parameters for a node are de�ned as the ratios of51
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urrents to the node-averaged �ux. Thehomogenized parameters are usually 
omputed by weighting the spatially dependent
ross se
tions with the �ux solution obtained in an assembly 
al
ulation with zero net
urrent boundary 
onditions. These parameters are 
omputed using a referen
e �nemesh 
al
ulation. While these methods work well in situations in whi
h the 
onditionsanalyzed using the nodal method 
losely resemble the referen
e 
ondition at whi
hthe 
oe�
ients were 
omputed, they often breakdown when the di�eren
e betweenthe analyzed and referen
e 
onditions be
omes large.Nodal methods work in part by solving a non-linear one dimensional approxi-mation to the �ux in the X, Y and Z dire
tions for ea
h 
ell. This is less workthat solving a fully three dimensional approximation to the entire 
ell. If the �uxis to be re
onstru
ted for the entire 
ell higher order polynomial te
hniques 
an beused. Spe
ial leakage terms are normally in
luded to deal with neutron �ux whi
h isuna

ounted for near the far boundaries of the 
ell.Transverse integrated nodal methods assume that nodes are either truly uniformthroughout their entire volume, or that they may be adequately represented usingnode-averaged values of the 
ross se
tions and di�usion 
oe�
ients. This assumptionof uniformity of intra-nodal 
omposition does not apply to most rea
tor 
al
ulationsthat employ assembly or quarter-assembly sized nodes. These issues are addressedby advan
ed nodal homogenization s
hemes that yield equivalent di�usion theoryparameters that allow transverse integrated nodal 
odes to 
ompute node-averagedquantities that agree 
losely with the results of �ne mesh 
al
ulations in whi
h theheterogeneity within the node is expli
itly represented.The rod 
usping problem [20, 95, 102, 116℄ results when a naive approximation forthe motion of either a 
ontrol rod or fuel assembly is used as part of a 
oarse meshsolution. The naive approximation models a large 
ell whi
h is partially o

upied52
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ross se
tion 
onstants that represent the fully roded 
ell and the unrodded 
ell.When rea
tivity is plotted versus assembly insertion distan
e the naive approximationtypi
ally results in a rea
tivity 
urve with a series of 
usps whi
h fall in betweenpositions where the assembly is aligned with the mesh. The size of the 
usps arerelated to the pre
ise problem being studied, but at least for problems whi
h use
oarse meshes the deviations from the 
orre
t rea
tivity are 
onsiderable and nota

eptable.Many te
hniques exist for the treatment of the rod 
usping problem in the 
ontextof nodal solutions in
luding the approximate �ux weighting method, the analyti
al�ux weighting with dis
ontinuity fa
tor methods, the bi-linear weighting method andthe equivalent-node method. All of these methods provide satisfa
tory approximationfor the motion of assemblies with the ex
eption of the volume weighting method [176℄.Di�
ulties with Nodal MethodsNodal methods are very 
ompli
ated to derive, some variations require 
areful 
ali-bration and are only valid for a narrow simulation range, and often require the 
om-putation of a referen
e solution. Early nodal methods have been 
riti
ized for beingin
onsistent with the neutron di�usion equations. The modern nodal methods, alsoknown as the transverse-integrated nodal methods, are 
onsistent but add more 
om-plexity so that they are often restri
ted to two energy groups. The error of nodaldis
retization is di�
ult to analyze hen
e the ben
hmarking of nodal 
odes still re-lies on a �nite di�eren
e 
ounterpart. The unusual 
hoi
e of nodal unknowns, thenode-averaged and fa
e-averaged quantities, makes the resulting dis
retized systemin
ompatible with fast iterative methods. It is usually very di�
ult to a

elerate the53
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onvergen
e of solution of a nodal dis
retized system of tens of thousands of equations.While �ux values 
an be easily extra
ted from a �nite di�eren
e simulation the nodalsolution is for a node-averaged quantity whi
h requires dehomogenization to obtainthe rea
tion rate distribution within the node [117℄.2.4 Problem Solving EnvironmentsA Problem Solving Environment (PSE) automates the pro
ess of model 
onstru
tionby 
reating a reusable tool for a domain of problems. The 
lassi
al simulation designand 
onstru
tion pro
ess is uni�ed in a single reusable tool that en
apsulates expertisefrom a variety of domains. A PSE 
olle
ts together several solution methods andmodels addressing issues su
h as appropriate software reuse, intrinsi
 model validation,and intelligent algorithm sele
tion.In the last 15 years the idea of a PSE has penetrated into a variety of engineer-ing dis
iplines. The basi
 explanation for this re
ent surge of interest lies with thedevelopment of graphi
al user interfa
es, improvements in overall hardware speed, aswell as the standardization of s
ienti�
 software tools. One early dis
ussion of PSEsappears in an arti
le by Gallopolous, Housti
e and Ri
e [66℄, where the history of theidea of an all-purpose s
ienti�
 solution tool going ba
k as far as 1960 is summarized.In the same arti
le the report provided by the 1991 workshop on PSEs sponsoredby the National S
ien
e Foundation is given. Sin
e this arti
le, hundreds of arti
leshave appeared whi
h dire
tly use the term PSE. With the ex
eption of the text by[88℄, there are few dis
ussions whi
h attempt to 
ategorize or summarize the bodyof literature on PSEs. While the idea of a PSE is itself intuitive, few proje
ts 
ome
lose to fully a
tualizing the idea. The fully �edged PSE must somehow be all thingsto all people, so while on the one hand the idea is relatively easy to appre
iate, its54
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tion of this 
hapter presents a 
olle
tion of PSEs roughly 
ategorizedas
• Spe
ial Purpose PSEs
• Multi-Physi
s PSEs
• Networked S
ienti�
 PSEs
• Collaborative PSEsFor ea
h 
ategory several representatives are dis
ussed. These 
ategories serve topaint a rough pi
ture of the 
urrent state of the art with respe
t to PSEs dividingtheir designs into four broad groups. Given the wide variety of PSE proje
ts, a propertaxonomy and analysis of properties and trends 
ould easily �ll an entire text. Manyproje
ts and trends have been left undis
ussed.2.4.1 Spe
ial Purpose PSEsMany PSE systems limit their design to a spe
i�
 range of physi
al phenomena.These tools are often built by spe
ialists in the area who are attempting to generalizesome of their modeling te
hniques. Presented here are several di�erent examples ofdomain spe
i�
 PSEs in
luding GEANT4, WBCSim, Entero and ICEPIC. Ea
h e�ortis driven by a relatively restri
ted domain. Also of relevan
e but not dis
ussed in thisse
tion are tools des
ribed by [11, 92, 93, 74, 77, 118, 137℄.The tools des
ribed in this se
tion are PSEs in the sense that they address a wellunderstood but limited range of problems and provide a �exible framework whi
h isappli
able to only a sele
t set of related phenomena. In some senses these may be the55
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tive tools des
ribed in this 
hapter sin
e they are driven by the e�orts ofdomain experts to 
olle
t together a set of 
losely related tools, and make those toolsinter-operate in a very pra
ti
al way for the bene�t of their peers. In 
ontrast someof the very general tools des
ribed in subsequent se
tions attempt to address issuesfrom a broad genera of related problems. It is arguable that in
reasing the generi
ityof a tool redu
es its e�e
tiveness in all of the areas that tool attempts to address.GEANT4GEANT4 [3, 12, 60, 91, 110, 141, 159, 179℄ is dis
ussed in some detail here be
ause itrepresents a PSE whi
h is very broad in s
ope and in
ludes many aspe
ts of Nu
learEngineering and Ele
tri
al Engineering. GEANT4 is also very well do
umented inthe literature by dozens of resear
h publi
ations. The work for GEANT4 is based ontwo studies done independently at CERN and KEK in 1993. Both groups sought toinvestigate how modern 
omputing te
hniques 
ould be applied to improve what waso�ered in the existing GEANT3 program. A proposal was submitted to the CERNdire
tor to build a new program built using obje
t oriented te
hnology, the proje
tresulted in a worldwide 
ollaboration of 100 s
ientists and engineers drawn from morethan 10 experiments in Europe, Russia, Japan, Canada and the United States. Whilegeographi
ally distributed software development and large-s
ale obje
t-oriented sys-tems are no longer a novelty, the authors 
onsider the GEANT4 Collaboration, interms of the size and s
ope of the 
ode and the number of 
ontributors, to representone of the largest and most ambitious proje
ts of this kind. Shortly after the releaseof the �rst version in 1999, the GEANT4 Collaboration was established to 
ontinuethe development and re�nement of the toolkit and to provide maintenan
e and usersupport. The Collaboration Board a Te
hni
al Steering Board and several working56
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es and monitor the agreed responsibilities of thea�liates. GEANT4 is freely available for download and runs on multiple platforms.GEANT4 OverviewGEANT4 is a toolkit for simulating the passage of parti
les through matter. It in-
ludes a 
omplete range of fun
tionality in
luding tra
king, geometry, and physi
smodels. The physi
s pro
esses o�ered 
over a 
omprehensive range, in
luding ele
tro-magneti
, hadroni
 and opti
al pro
esses, a large set of long-lived parti
les, materialsand elements over a wide energy range starting from 250 eV and extending in othersto the TeV energy range. It has been used in appli
ations in parti
le physi
s, nu
learphysi
s, a

elerator design, spa
e engineering and medi
al physi
s.Modern parti
le and nu
lear physi
s experiments pose enormous 
hallenges in the
reation of 
omplex yet robust software frameworks and appli
ations. Of parti
ularimportan
e is the ever-in
reasing demand for large-s
ale, a

urate and 
omprehensivesimulations of the parti
le dete
tors used in these experiments. Similar 
onsiderationsarise in other dis
iplines, su
h as: radiation physi
s, spa
e s
ien
e, nu
lear medi
ineand many other areas where parti
le intera
tions in matter play a role.GEANT4 a
ts as a repository that in
orporates a large part of all that is knownabout parti
le intera
tions; moreover it 
ontinues to be re�ned, expanded and devel-oped. Obje
t-oriented methods have allowed the e�e
tive management of 
omplexityand the limitation of dependen
ies by the de�nition of a uniform interfa
e and 
om-mon organizational prin
iples for all physi
s models.
57
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alsoftware model 
ontains a 
omponents-event generator, dete
tor simulation, as well asre
onstru
tion and analysis methods that 
an be used separately or in 
ombinations.Simulation models should be modular and �exible, its physi
al models should betransparent and open to user validation. It should allow the user to understand,
ustomize and extend it in all domains. Its modular ar
hite
ture should enable theuser to pi
k only those 
omponents whi
h are ne
essary.The key domains of the simulation of the passage of parti
les through matter are:
• geometry and materials
• parti
le intera
tions in matter
• tra
king management
• digitisation and hit management
• event and tra
k management
• visualisation and visualisation framework
• user interfa
eThese domains naturally lead to the 
reation of 
lass 
ategories with 
oherent in-terfa
es and for ea
h 
ategory, a 
orresponding working group with a well de�nedresponsibility. GEANT4 is des
ribed as a toolkit by its authors be
ause this termimplies that a user may assemble a program at 
ompile time from 
omponents 
hosenfrom the kit or supplied by the user.GEANT4 allows the user to 
reate a geometri
 model with a large number of 
om-ponents of di�erent shapes and materials. The user 
an de�ne sensor elements that58
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ord information. GEANT4 also provides a 
omprehensive set of physi
s pro
essesto model the behaviour of parti
les. The user 
an intera
t with the toolkit throughone of several di�erent graphi
al user interfa
es. Both the geometry and the parti
letra
ks 
an be visualised through a variety of graphi
s systems. The user interfa
eis su�
iently �exible that its implementation 
an be 
ombined with that of othersimulation systems.Openness was an important design goal for the authors. An obje
t oriented imple-mentation allowed for a 
lear and 
ustomisable 
orresponden
e between parti
les andpro
esses and o�ers a 
hoi
e of models for ea
h pro
ess. Cross se
tion 
omputationsas well as the parametrization and interpolation of databases are all 
ompletely ex-posed. The physi
s is implemented through 17 major 
ategories of 
lasses. Categoriesin
lude
• global: 
overing the system of units 
onstants and random number handling
• geometry: 
overing volumes for dete
tor des
ription
• inter
oms: allows GEANT4 
ode to intera
t with the user interfa
e and otherplugins
• tra
k: 
ontains 
lasses for tra
ks and steps
• pro
esses: pro
esses make use of tra
ks and 
ontains models of intera
tion
• transportation: handles the transport of parti
les in the geometry model
• event: manages system events
• visualization: plotting and rendering of 
omputed data
• persisten
y: 
he
king pointing of simulated data59
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• user-interfa
e: intera
tive graphi
al widgets and buttons presented to the userThe event 
ategory provides an abstra
t interfa
e to external physi
s event genera-tors, this isolation allows a GEANT4 based simulation program to not be dependenton spe
i�
 
hoi
es for physi
s generators and also to be independent of the spe
i�
solution.The geometry 
ategory o�ers the ability to des
ribe a geometri
 stru
ture andpropagate parti
les e�
iently through it. Some 
on
epts have been borrowed fromprevious implementations but improvements, re�nements and advan
es have beenmade in key areas. GEANT4 handles solids with simple shapes, like re
tilinear boxes,trapezoids, spheri
al and 
ylindri
al se
tions or shells and are stored through Con-stru
tive Solid Geometry (CSG). Solids may also be 
ombined by Boolean operations,interse
tion, union and subtra
tion.The tra
king 
ategory steers the invo
ation of pro
esses. Ea
h parti
le is movedstep by step with a toleran
e that permits signi�
ant optimising of exe
ution but thatpreserves the required tra
king pre
ision. All physi
s pro
esses asso
iated with theparti
le are de�ned by a step size. For a parti
le at rest this is a time rather than alength. The smallest of either the maximum allowed step as de�ned by the user, orthe steps proposed by all of the atta
hed pro
esses is 
hosen.A variety of di�erent approa
hes are present for the various types of physi
s.Parti
le de
ay is straightforwardly 
al
ulated from the mean life of the parti
le. Theele
tromagneti
 physi
s 
lasses handle the intera
tions of leptons, photons, hadronsand ions. The pa
kage is organised as a set of 
lass 
ategories:
• standard: handling basi
 pro
esses for ele
tron, positron, photon and hadronintera
tions 60
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• low energy: providing alternative models extended down to lower energies thanthe standard 
ategory
• muons: for handling muon intera
tions
• opti
al: providing spe
i�
 
ode for opti
al photons
• X-rays: providing spe
i�
 
ode for X-ray physi
s
• utils: 
olle
ting together utility 
lasses used by the other 
ategoriesClasses for parti
les and materials implement fa
ilities for des
ribing the physi
alproperties that are ne
essary for the simulation of parti
le-matter intera
tions. Theparti
les 
lass des
ribes basi
 properties like mass, 
harge, et
. and also must en
odethe pro
esses to whi
h a parti
le is sensitive. The materials 
ategory re�e
ts whatexists in nature: materials are made of a single element or a mixture of elements.Various user interfa
e tools like Motive, Tk/t
l, JAVA and others have been used toimplement the 
ommand 
apturer. Various groups whi
h parti
ipate in the GEANT4Collaboration have 
ontributed their own front-ends to the 
ommand system. Cur-rently available implementations are as follows:
• bat
h: non-intera
tive 
on�guration �le driven
• t
sh-like: a 
ommand shell like implementation for intera
tive sessions
• GAG: a 
lient/server adaptive GUI re�e
ting GEANT4 states
• OPACS widget manager implementationGEANT4 visualisation 
an render dete
tor geometry, parti
le traje
tories, tra
kingsteps, hits, and text labels. The visualization driver 
an dire
tly a

ess graphi
s61



PhD thesis D. Gilbert M
Master - Ele
tri
al and Computer Engineeringlibraries, 
ommuni
ate with independent pro
esses through either pipes or so
kets, or
an simply write an intermediate �le for a separate viewer.There are various analysis systems that generate histograms, analyse event datastatisti
ally. GEANT4 uses the AIDA abstra
t interfa
e, there are several examplesof data analysis systems 
ompatible with AIDA in
luding JAS, Lizard and OpenS
i-entist.EnteroThe long-term goal for the Entero [68℄ environment is to resear
h and develop amodule-oriented, multi-physi
s, mixed-�delity system simulation environment for en-gineers to enable rapid system performan
e analysis and design optimization. Majordesign goals for the environment in
lude providing a systems view for analysis, amodule-oriented view, enabling modules of di�erent physi
s types to be 
oupled to-gether, providing mixed �delity modules and enabling optimization and un
ertaintyquanti�
ation studies. Coupling di�erent physi
s types allow an engineer to modelele
tri
al 
ir
uit in a thermal or radiation environment and monitor its performan
e.Adjusting the �delity of the model allows the designing engineer to repla
e a 
oarser�nite element mesh with a �ner one, or a linear model with a non-linear model.One fo
us for the Entero environment is modeling systems 
ontaining ele
tri
al
ir
uits that are exposed to �res. Ele
tri
al 
ir
uits 
an be embedded in ea
h module,but not 
onne
ted between modules. Ele
tri
al a
tivity is 
al
ulated using the SPICE
ir
uit simulator and 
ir
uits are spe
i�ed through standard SPICE netlist �les. The
oupling between the zero-dimensional thermal models and the 
ir
uit models is oneway. It is 
omputed using the zero-dimensional bla
k body thermal modules andthen this temperature is imposed on any 
ir
uit embedded in the module, any heat62
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ir
uit is negle
ted. In the 
ase where higher dimensional modelsare used to 
ompute the heat generated by an obje
t, an average over the 
omponentis 
omputed whi
h redu
es it to a zero dimensional �gure before it is 
ommuni
ated.ICEPIC Prototyping EnvironmentImproved 
on
urrent ele
tromagneti
 parti
le in 
ell (ICEPIC) [30, 125℄ is being devel-oped at the Air For
e Resear
h Laboratory. Of parti
ular interest to the United StatesDepartment of Defense is the design of dire
ted energy devi
es that generate high-power mi
rowave (HPM) pulses. The Air For
e Resear
h Laboratory is working tobring about a paradigm shift in the design, analysis and 
onstru
tion of HPM sour
es.This shift involves harnessing high performan
e 
omputing and using it throughoutthe resear
h pro
ess.ICEPIC is a relativisti
 3-D Cartesian variable mesh ele
tromagneti
 parallel PIC
ode 
apable of simulating a wide variety of ele
tromagneti
 problems in
luding highpower mi
rowave devi
es. HPMs are generated from the resonant intera
tion of in-tense relativisti
 ele
tron beams with ele
tromagneti
 
avities. The intera
tion trans-forms ele
tron kineti
 energy into ele
tromagneti
 energy. Maxwell's equations areused to analyze these systems. ICEPIC is 
apable of managing millions of 
omputa-tional 
ells 
ontaining billions of modeled parti
les. Test 
ases run on networks with100s of workstations. ICEPIC has su

essfully simulated various real-world HPM de-vi
es, su
h as the magneti
ally insulated line os
illator (MILO) and the relativisti
klystron os
illator (RKO).Having usable, reliable, high performan
e physi
s simulation has 
hanged howthe Air For
e Resear
h Laboratory engineer their designs. In the past, 
ode run-ners, pra
ti
al experimentalists and 
ode developers all worked with di�erent sets of63
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odes were di�
ult enough to use that too many unre-alisti
 simpli�
ations were made by the persons exe
uting the 
odes in order to assurethat simulations ran to 
ompletion in reasonable periods of time. The 
umulativee�e
t of simpli�
ations by ea
h group meant that e�e
tively di�erent devi
es werebeing studied. Tools like ICEPIC, have simpli�ed the exe
ution of high performan
eproblems to the point where realisti
 details like full geometry, multiple sharp edges,and nonzero va
uums 
an be 
onsidered.2.4.2 Multi-Physi
s PSEsIn sharp 
ontrast to spe
ial purpose PSEs, multi-physi
s PSEs attempt to address avery broad s
ope of problem domains whi
h link various physi
al phenomena. Thesetools usually identify a modeling te
hnique whi
h is appli
able to a wide variety ofproblem domains. Many tools base their approa
h on a parti
ular solution te
h-nique, like FEMLAB whi
h applies the �nite element method in 
ombination withunstru
tured meshes against a wide array of problem types. Problem types in FEM-LAB are 
atalogued within a sequen
e of templates and presented to the user inmenu format through a verbose interfa
e. SCINAPSE and CTADEL are a
ademi
proje
ts whi
h both employ ideas from 
omputer algebra te
hniques allowing the userto spe
ify solution methodologies through their own spe
ially developed s
riptinglanguages. Although CTADEL's authors fo
used there resear
h e�orts on weathergeneration it is in
luded in this 
ategory be
ause it embodies many of the sameprin
iples of �exible model des
ription as well as 
ode generation. Also of inter-est and appli
ability to a broad set of problems but not dis
ussed in this se
tion are[32, 33, 37, 83, 86, 94, 100, 173℄While ea
h of these tools is able to address a broad array of problem types, and64
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h is des
ribed in generi
 terms to some extent, it should be kept in mindthese tools rely on a limited set of problem 
hara
teristi
s. No tool 
an be perfe
tlygeneri
 and at the same time, simple to use.CTADELCTADEL [160, 161, 163℄ is a programming environment 
apable of transforming high-level PDE problem spe
i�
ations into e�
ient 
odes for serial, ve
tor, and parallel
omputer ar
hite
tures using 
omputing-
ost heuristi
s and ar
hite
ture-spe
i�
 sym-boli
 transformations. Software synthesis is the automati
 translation of a problem,de�ned at a high level of abstra
tion, into exe
utable 
ode, by stepwise re�nement.Code generation is distin
t from 
ompilation in that a typi
al 
ompiler simply per-forms a fairly literal translation from a high language to a lower language, whereasa 
ode generator typi
ally makes more inferen
es, and builds exe
utable 
ode whi
hmight 
ontain loops, subroutines, and 
onditionals whi
h are not expli
itly spelledout in the spe
i�
ation.CTADEL implements a translation me
hanism with inherent ve
tor and ma-trix semanti
s to transform ve
tor equations into s
alar equations. The translationme
hanism follows standard notational 
onventions for PDE operators and adopts aMATLAB-like programming style for symboli
 matrix and ve
tor operations. Thebridge between a model with 
ontinuous derivatives and integrals and the numer-i
al s
hemes with sten
il operations and quadratures is laid by employing operatoroverloading te
hniques. CTADEL's system in
orporates a symboli
 and algebrai
 sim-pli�er to transform problem spe
i�
ations into intermediate representations and forapplying simpli�
ation and optimization on the intermediate problem representationsand 
ode. 65
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hemes, in 
ontrast, 
an take mu
h larger time steps. Sin
e the CTADEL softwareis based on 
ode generation it was possible to extend its 
al
ulation methods withadditional interpolation s
hemes in
luding linear and quadrati
 methods.FEMLABFEMLAB [42℄ is a general tool for solving PDEs that arise in a variety of dis
iplinesin
luding heat transfer, �uid �ow, ele
tromagneti
s, stru
tural me
hani
s and manyother areas. Models 
an be 
onstru
ted in 1-D, 2-D or 3-D. FEMLAB provides adetailed graphi
al user interfa
e whi
h fa
ilitates model 
onstru
tion as well as outputrendering. FEMLAB allows several physi
al dis
iplines to be 
ombined together. Thisforms FEMLAB's de�nition of multi-physi
s.FEMLAB allows users to enter PDEs dire
tly and does not hard 
ode equationsfor parti
ular physi
al regimes. Dire
t entry of PDEs provides mu
h of FEMLAB'sgenerality and �exibility. FEMLAB's standard 
apabilities 
an be extended throughs
ript programming. Simulations 
an be paused and 
he
k-pointed at any stage ina 
al
ulation, 
al
ulation methods 
an be 
hanged in the midst of a 
omputation.FEMLAB is built on top of MATLAB so FEMLAB simulations 
an be easily in
or-porated with other MATLAB tools. FEMLAB employs 
ode generation by 
onvertingthe user's graphi
al input into MATLAB 
ode. Exported 
ode 
an then be modi�edor spe
ially tweeked by the user.FEMLAB solves numeri
ally ellipti
al, paraboli
 and hyperboli
 nonlinear di�eren-tial equations using the �nite element method. FEMLAB uses the Galerkin prin
iplefor nodal �nite elements for transformation of di�erential equations into equivalentsystems of algebrai
 equations. 66
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ommunity as the �rstsoftware tool to solve nontrivial di�erential equations in a fast and a

urate fashion.FEMLAB is dis
ussed by [1, 56, 104, 112, 148, 162, 175℄.FEMLAB's generality does not satisfy everyone's needs. Afeyan writes [1℄ thatFEMLAB does not provide a way to 
ontrol step size whi
h would be appropriate tothe parti
ular equation the author is 
onsidering. Afeyan also writes that FEMLABprevents 
ertain kinds of nonlinear 
oe�
ients from being de�ned whi
h are importantto opti
al semi
ondu
tors. Komarov writes [104℄ that for 
ertain waveguide stru
turesFEMLAB omits boundary 
onditions for some 
ases whi
h would prevent it from beingable to solve 
ertain mi
rowave heating problems. The reservations reported by bothauthors are fairly domain spe
i�
, and do not seem to be fundamental design issueswith FEMLAB but rather appli
ation spe
i�
 problems.SCINAPSES
iNapse is a 
ode generating PSE for solving s
ienti�
 
omputing problems withoutlow level programming [6, 5℄. S
iNapse has generated 
odes that solve the transientversion of Maxwell's equations in 3D dispersive, anisotropi
 media, the Bla
k S
holesequations for valuation of multiple asset derivative se
urities in 
omputational �nan
e,nonlinear, multidimensional, multispe
ises rea
tion di�usion equations for 
hemi
aland nu
lear appli
ations and time domain solution of vis
oelastodynami
 equationsin 3D anisotropi
 media.The 
odes that S
iNapse generates 
an in
lude features su
h as general 
oordi-nate transformations and grid generators, various linear solvers and pre
onditioners,higher-order di�eren
ing te
hniques, automati
 interpolation of equation parametersfrom multidimensional tabular input data, jump 
onditions in both spa
e and time67
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onstraints su
h as positivity.The goal is to generate 
odes in whi
h the �nite-di�eren
e PDE solution be
omes theforward engine for solving multiparameter inverse problems via nonlinear optimiza-tion. Problem spe
i�
ations in S
iNapse typi
ally range from several lines to a half apage, and the synthesized 
odes 
an be thousands of lines long. S
iNapse is writtenin Mathemati
a 
ode, and is about 120,000 lines longS
iNapse's high level problem spe
i�
ation language supports natural des
riptionsof geometry, mathemati
s and desired interfa
es. The knowledge base in
ludes 
oor-dinate free 
onstru
tions (su
h as the Lapla
ian), equations (su
h as Navier-Stokesor Bla
k-S
holes), dis
retization rules (su
h as Crank Ni
holson), time stepping al-gorithms, solvers (su
h as pre
onditioned 
onjugate gradient and SOR). The system
hooses appropriate data stru
tures and generates a pseudo-
ode solution that it thentranslated into the desired target language. Mathemati
al 
ode is optimized alongthe way.S
iNapse automati
ally re�nes a spe
i�
ation in a stepwise fashion from the mostabstra
t level though several more 
on
rete levels, �nally 
reating a numeri
al 
ode.After ea
h stage S
iNapse 
he
ks the problem state for 
onsisten
y appropriate tothat level of abstra
tion.The 
ode synthesis system is built on top of a general purpose knowledge basedsystem written in Mathemati
a. The system in
ludes an integrated obje
t system, rulesystem and planning system. S
iNapse obje
ts expli
itly represent 
ommon mathe-mati
al 
onstru
ts su
h as a geometri
 region or part thereof. Obje
ts also representprogramming 
onstru
ts su
h as a linear solver, a subroutine or a program variable.S
iNapse internal representation of numeri
al programs is independent of targetlanguage. In this abstra
t representation 
ontext dependent global optimizations areeasy to implement. S
iNapse generates 
odes in C and FORTRAN 77.68
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ienti�
 PSEsMany PSEs take advantage of networked ar
hite
tures for the purpose of exploitingeither parallelism in the target problem or distribution of the 
omputing fa
ilities. Insome 
ases part of the 
omputational problem is �guring out how to distribute theproblem a
ross 
omputing resour
es so it 
an be solved e�e
tively. In other 
ases,part of the problem is the sele
tion of whi
h resour
e to use. A PSE may 
ontain adata base of networked 
omputers only some of whi
h are able to solve the problemat hand. This will be true in situations where the problem type submitted by theuser requires software that is only available on a spe
i�
 platform. Some PSEs areable to make judgements about whi
h solvers, or whi
h hardware platforms are bestsuited to solving a problem. Proje
ts not dis
ussed in this se
tion but also of interestare [11, 45, 47, 51, 65, 64, 67, 74, 77, 85, 124℄.Not all problems are amenable to distribution, and not all problems 
an takeadvantage of parallelism. For those that 
an, the 
onstantly 
hanging hardware andsoftware base presents a 
omplex set of 
on�guration problems to the user. Whilethe automation of distribution as part of a PSE may not be a mature s
ien
e, itis a ne
essary one if parallelism is to be e�e
tively exploited by everyday users. A
olle
tion of frameworks are presented in this se
tion all of whi
h address issues relatedto networked problem solving.The SAMRAI FrameworkThe SAMRAI [171℄ (Stru
tured Adaptive Mesh Re�nement Appli
ation Infrastru
-ture) Framework is a parallel data 
ommuni
ations framework for stru
tured adaptivemesh re�nement multi-physi
s appli
ations. Stru
tured adaptive mesh re�nement isan e�e
tive te
hnique for fo
using 
omputational resour
es in numeri
al simulations69
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al and Computer Engineeringof PDEs that span a range of disparate length and times
ales. AMR is used to dy-nami
ally in
rease grid resolution lo
ally to resolve important �ne-s
ale features inthe solution. The goal is to a
hieve a more e�
ient 
omputation. SAMR is a parti
-ular variety of adaptive mesh re�nement where the lo
ally re�ned grid is de�ned withstru
tured grid 
omponents.SAMRAI was developed to support a wide range of parallel multi-physi
s prob-lems. The di�
ulties asso
iated with implementing appli
ations using SAMR designoften makes the implementation prohibitive. Prin
iple problems solved by SAMRAIin
lude the handling of numeri
al methods for lo
ally-re�ned grids and the manage-ment of data ex
hange. Data ex
hange patterns must be modi�ed ea
h time the grid
hanges.Multi-physi
s appli
ation often 
ouple di�erent algorithmi
 
omponents ea
h ofwhi
h provides a distin
t part of an overall s
heme. Users 
an easily des
ribe datatransfer phase of a 
omputation by spe
ifying 
ommuni
ation operations to be per-formed, su
h operations in
lude 
opying, temporal and spatial interpolation, and theappli
ation of user de�ned physi
al boundary 
onditions.The SAMRAI framework represents a layer of automation and 
ommuni
ationne
essary for redu
ing the overall 
omplexity of developing parallel appli
ation 
odeswhi
h take advantage of the adaptive mesh re�nement.NetSolveThe NetSolve Grid Computing system [13, 36℄ provides users with a

ess to remote
omputational hardware and software resour
es. Grid 
omputing des
ribes a 
on-
eptual fabri
 of 
omputing resour
es analogous to the ele
tri
al power grid, whi
hideally uniformly and seamlessly 
hannels 
omputational servi
es to 
lients who plug70
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al and Computer Engineeringin to the grid. NetSolve's �rst motivation was to address the ease-of-use, portabilityand availability of optimized software libraries for high performan
e 
omputing. Thesystem uses a 
lient/agent/server model.Three major 
omponents are employed by NetSolve: the NetSolve agent, informa-tion servi
e and resour
e s
heduler, the NetSolve server, a networked daemon provid-ing 
omputational hardware and software resour
es, and the NetSolve 
lient librarieswhi
h allow users to instrument their appli
ation 
ode with 
alls for remote 
om-putational servi
es. NetSolve provides a fun
tional programming model based onRPC in whi
h the 
lient is used to pass NetSolve obje
ts to and from servi
es asinputs and outputs. NetSolve supports obje
ts like, MATRIX, a 2 dimensional array,SPARSEMATRIX, a two dimensional array stored in 
ompressed row storage format,VECTOR, a one dimensional array and other similar stru
tures. The NETSOLVE
lient supports both syn
hronous and asyn
hronous 
alls. NETSOLVE 
urrently sup-ports APIs for MATLAB and MATHEMATICA environments. NetSolve enhan
esthese environments by expanding the numeri
al fun
tions available to the user andallowing for in
reased performan
e by exe
uting 
ode remotely on more e�
ient ma-
hines.NETSOLVE has in
orporated a large number of solver algorithms from a vari-ety of pa
kages like BLAS, LAPACK, S
aLAPACK, ItPa
k, PETS
, AZTEC, MA28,SuperLU and ARPACK. NETSOLVE input routines 
an analyze user input and in-telligently sele
t algorithms depending on input data 
hara
teristi
s.Net Pellpa
k PSE ServerPellpa
k [84℄ is a PSE for PDEs, Net Pellpa
k [36, 114℄ the software's Web-based
ounterpart, lets users solve 
omplex PDE problems with a graphi
al user interfa
e, a71
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ol, and Net Pellpa
k servers running on ma
hines anywhereon the network. The main design obje
tive was to provide the Pellpa
k GUI to remoteusers in an e�e
tive se
ure and e�
ient manner.There are several possible design s
enarios for a web based PSE. The �rst approa
his to make the whole PSE available over the web, where the web based GUI drives allaspe
ts of the PSE. This is usually only feasible over a high speed LAN 
onne
tion.The se
ond s
enario uses a networked software bus to 
reated virtual libraries by dis-tributing the library to multiple servi
e providers. Communi
ations te
hnologies likeremote pro
edure 
alls or Corba may be utilized to enable the network 
onne
tions.Net Pellpa
k utilizes these two fundamental design pro
edures. On
e the user hassele
ted a solution path through intera
tions with Net Pellpa
k, either library soft-ware modules are downloaded from a repository and used lo
ally, or the problem issent to a 
omputation server with an implementation of the algorithm. Net Pellpa
kautomati
ally de
ides for the user whi
h approa
h is most appropriate depending onthe users problem des
ription. Net Pellpa
k library interfa
es follow a standard sothat bodies of mathemati
al software 
an be developed and maintained for a widevariety of 
omputer systems.2.4.4 Collaborative PSEsOne 
ommon trend among PSE designers is to build PSEs with the purpose of enablingmultiple users to 
ollaborate on a given proje
t. Collaborative PSEs go beyond simplydistributing a PSE a
ross a network as des
ribed in the previous se
tion. An attemptis made to 
onstru
t an environment for the 
ooperative solution of a problem fora broad group of individuals who may be physi
ally separated. Collaborative PSEsmake the work of sharing engineering design and simulation results between developers72
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hnologies are normally employed, mu
h use is madeof the Internet and world wide web. Some proje
ts fo
us on sharing simulation results,other proje
ts fo
us on the sharing of 
omputational resour
es. Collaborative PSEsfo
us on the pro
esses by whi
h s
ientists intera
t, and provide tools for bridging vastdistan
es that often separate spe
ialists who wish to work on the same problems. Thistopi
 is also dis
ussed by [23, 55, 62, 164℄.PNNL's design for CPSEAt Pa
i�
 Northwest National Laboratory (PNNL) the design of 
ollaborative PSEsfor s
ienti�
 
omputing in various domains is being studied [96℄. PNNL's proje
t seeksto 
hara
terize the nature of s
ienti�
 problem solving and sear
hes for innovative waysto improve it. The ultimate goal is to allow s
ientists and engineers to enhan
e their
ollaborative problem solving 
apabilities through the improved and integrated usageof resour
es and tools.Cognitive resear
hers des
ribe the a
t of reasoning or problem solving as a higherorder skill that en
ompasses spe
i�
 pro
esses and abilities. Problem solving o

ursin the 
ontext of the a
tivities that s
ientists perform and the knowledge that theypossess. Providing a

ess to 
omputational resour
es is not enough, rather engineersneed support for how they utilize domain knowledge.PNNL's proje
t team met with 5 di�erent groups of s
ientists and engineers 
on-sisting of 
omputational 
hemists, regional 
limate modelers, nu
lear magneti
 reso-nan
e experimentalists, automotive engineers and �uid dynami
s modelers. Throughan interview pro
ess, several 
ommon problem solving needs were determined.1. Easy and e�e
tive a

ess to 
omputational resour
es. Resour
es should be rep-resented in a way that is 
omprehensible and intuitive to the domain engineer.73
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ution support. Better tools are needed it assist inde�ning, managing, exe
uting analyzing interpreting and sharing experiments.3. The ability of s
ientists to solve problems hinge on their knowledge of domain
on
epts and theories. By making knowledge expli
it and 
on
rete, s
ientistsmay be able to better maintain and evolve this knowledge.4. The experimental pro
ess is highly repetitive, tools are needed whi
h supporta repetitive 
y
le while allowing the modi�
ation of initial 
onditions and 
om-parison of generated output.Domain s
ientists and engineers do not naturally think of 
omputational resour
esas appli
ations, 
omputers and �les but rather as models, 
al
ulations and spatialand temporal data. PSEs need to be designed to promote the appropriate level ofabstra
tion su
h that s
ientists may utilize these resour
es in a form 
onsistent withtheir spe
i�
 domain 
on
epts and views.S
ienti�
 problem solving is inherently a 
ollaborative e�ort among resear
hers asthey share information, models, tools resour
es and results. More than just sharingspe
i�
 resear
h artifa
ts, s
ienti�
 problem solving also involves the sharing of one'sexpertise and experien
e. As s
ientists run 
omputational models, they apply a vastamount of pro
edural and domain knowledge. S
ientists may have valuable experien
ein running parti
ular 
omputational models. The ability to 
apture this kind ofknowledge and share it with others is the goal of the 
ollaborative PSE. S
ienti�

ollaboration does not o

ur in isolation but is driven by the fun
tions of the s
ienti�
resear
h.
74
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al and Computer EngineeringDLR's VirtualLabThe goal of DLR's VirtualLab [58℄ is to provide Web a

ess for ele
tromagneti
 s
atter-ing and radiative transfer simulation appli
ations developed at DLR's remote sensingte
hnology institute. All s
ienti�
 
omponents provide 
oarsely uni�ed Web baseduser interfa
es supporting data input, exe
ution steering, and output. Do
umenta-tion is integrated through Web hyper-links providing 
ontext sensitive on-line help.Users 
an retrieve 
omponents based on sear
h keywords mat
hed against meta-datathat are part of the 
omponents do
umentation.Ea
h user has a personal area where all data resulting from work with the VL arestored along with the sele
tion of 
omponents the user is working with, and all ex-perimental simulation data results. Ea
h experiment started by the user laun
hes thetask manager whi
h 
onstru
ts a job 
ontrol �le invoking the ne
essary 
on�gurationof the 
omponents. This system supervises the VirtualLab 
luster's 
ompute nodesand s
hedules job exe
ution using a load balan
ing strategy.The web interfa
e is tailored towards intera
tive 
ommand line appli
ations. Theseappli
ations operate in bat
h mode but 
an a

ept various stru
turally di�erent sortsof input data sets. The VirtualLab o�ers a me
hanism for abstra
tly des
ribing allthe relevant details of the appli
ations input behaviour so that the VL 
an provide aresponsive dynami
 user interfa
e.The virtual laboratory is used to exe
ute a variety of appli
ations of intereststo DLR. The fo
us is on s
attering 
odes whi
h are used to study light s
atteringopti
s on various 
lasses of nonspheri
al parti
les su
h as irregular i
e parti
les andChebyshev-like parti
les. The individual appli
ations in
lude Mies
hka, Pmies
hka,CYL and QCACP.
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tus Computational CollaboratoryThe Ca
tus Collaboratory toolkit for solving PDEs was originally designed to sim-ulate Einstein's equations for studying bla
k holes, gravitational waves and neutronstars, and has more re
ently been adapted for use in bioinformati
s and atmospheri
s
ien
es [8, 9, 31℄. The system also provides s
ientists without a knowledge of parallel
omputing or mesh re�nement with a simple framework for solving any system ofPDEs on many parallel 
omputer systems.Ca
tus appli
ations are built from a meta 
ode whi
h des
ribes how appli
ationsin 
ommon 
omputational languages, su
h as C, C++, FORTRAN 77, and FOR-TRAN 90 interweave. Parallelism and portability are a
hieved by hiding MPI, theI/O subsystem and the 
alling interfa
e under a simple abstra
tion API. Prepro
essorma
ros implemented through make �les and Perl s
ripts expand prepro
essor ma
rosto 
onstru
t the arguments of the �esh and additional arguments de�ned by ea
hthorn. Ca
tus is thus a meta-
ode, the user spe
i�es a desired 
ode and the systemautomati
ally generates the 
ode 
ontaining only those routines requested.Ca
tus takes advantage of emerging grid te
hnologies. Although distributed re-sour
es o�er many advantages there are downsides as well. The enormous terabytedata sets produ
ed by the Ca
tus simulations tax bandwidth limits. Even with thebest available international networking resour
es, downloading the data from the sim-ulation run may take longer than it took to run the simulation itself. These problemshave motivated many remote monitoring and steering e�orts.The ASC Portal is intended to deliver a 
ollaborative simulation managementframework for generi
 appli
ations, with the development driven by a parti
ular 
om-munity of astrophysi
ists, numeri
al relativists and 
omputational s
ien
e resear
hersthat use and develop their 
odes with Ca
tus. This 
ommunity makes up a virtual76



PhD thesis D. Gilbert M
Master - Ele
tri
al and Computer Engineeringorganization denoted as the ASC-VO. The Collaboratory enables a wide spe
trum ofresear
hers in the 
ommunity to 
ooperate on 
ode development and use. This has thee�e
t to drasti
ally in
rease s
ienti�
 produ
tivity by fostering 
ollaboration, 
uttingdown redundant e�orts by di�erent resear
h groups, and maximizing the bene�t ofmassively parallel 
omputing to the 
ommunity.2.5 Dis
ussionThis 
hapter has presented a broad array of topi
s and perspe
tives. Fundamentalphysi
al models and solution te
hniques are as important to the development of thisthesis topi
 as a bird's eye perspe
tive on some of the most ambitious simulationproje
ts developed to date. One of the di�
ulties in designing this thesis topi
 wasthe e�ort required in balan
ing a spe
i�
 problem domain whi
h en
ompasses a fun-damental set of questions against a suitably �exible methodology whi
h might yieldsome general insights and perspe
tives on the state of the art in engineering s
ien
etoday. The proposition of studying a generi
 modeling system, as outlined in theoriginal thesis proposal, is qui
kly rebuked by the obvious 
ounter suggestion thatmany su
h proje
ts already exist. Yet, what should be 
lear from the brief surveyof proje
ts presented in this 
hapter is that no matter how generi
 and �exible they
laim to be in ea
h 
ase there is some fundamental perspe
tive that drives the de-sign of any given PSE. New proje
ts 
ontinue to explore various avenues by applyingthemes 
ommon to already existing PSEs in their implementations to novel designissues and problem types. While the problem types and solution te
hniques presentedin the �rst part of this 
hapter 
an be addressed or taken advantage of by many ofthe tools des
ribed in the se
tion on PSEs, ea
h of the PSEs des
ribed supplies itsown parti
ular perspe
tive. 77
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s dis
ussed in this 
hapter supply the ne
essary ba
kground and motiva-tion for subsequent 
hapters. To the best of our knowledge moving mesh frameworkshave not been studied in the 
ontext of modeling fuel assembly and 
ontrol rod mo-tion. PSE examples dis
ussed in se
tion 2.4.1 and se
tion 2.4.2 have provided overalldesign motivation. The �exibility of proje
ts like SCINAPSE and CTADEL and theiruse of 
omputer algebra systems as part of their model de�nitions have motivated
ertain aspe
ts of the MOOSE design. The papers dis
ussed in se
tion 2.3.2 
ome
losest to addressing the issues related to moving meshes. The Overture proje
t andother papers by the same authors whi
h modeled �uid me
hani
s problems usingoverlapping grids provided many insights as to how the MOOSE's grid 
onne
tionalgorithms should be de�ned. The algorithms dis
ussed in the reviewed literature onlinked meshes referred spe
i�
ally to hyperboli
 �uid me
hani
s problems, so thesete
hniques 
an not be applied dire
tly. However, as will be dis
ussed in the next 
hap-ter, they provide the basi
 motivation for the MOOSE's mesh linking algorithms.Many of the te
hniques presented in this 
hapter are not standard pra
ti
e innu
lear engineering, and 
annot be dire
tly applied. Nodal methods, dis
ussed inse
tion 2.3.3, are the standard te
hniques 
urrently used to model moving fuel assem-blies. Although the authors who dis
uss nodal methods re
ognize the possibility ofusing moving meshes as an alternate strategy for modeling motion, to our knowledge,no attempt to do so has been undertaken. One author [176℄ 
riti
ises moving meshesas being both too 
ompli
ated to implement, and if implemented too in�exible.To address �exibility and 
omplexity of implementation, the MOOSE moving meshis built upon a general 
omputer algebra system able to implement the neutron di�u-sion equation dis
ussed in se
tion 2.1.3 under any of the impli
it integration s
hemesdis
ussed in se
tion 2.2.3. Not only are the MOOSE methods mathemati
ally expres-sive, but in order to solve real world problems high performan
e sparse linear and78
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hniques dis
ussed in se
tions 2.2.1 and 2.2.2 are taken advan-tage of. The MOOSE framework employs a 
ode generation system whi
h is ableto bridge the gaps between abstra
t problem representations and high performan
enumeri
al solvers. The 
ode generation me
hanisms, asso
iated solver libraries, andmesh linking rules are dis
ussed in the next 
hapter.
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Chapter 3
Implementation
3.1 Introdu
tionA framework is a reusable design of all or part of a software system des
ribed by a setof abstra
t 
lasses and the way instan
es of those 
lasses 
ollaborate; this presentationof the MOOSE highlights abstra
t features typi
al of Problem Solving Environmentsand lays out a 
on
eptual road map for subsequent work. For the purpose of testingand illustration 
ertain elements of the MOOSE framework have been developed. This
hapter will present some features of the prototype's implementation. The entire 
odebase for the MOOSE is quite large: at over 45,000 lines of original 
omputer 
ode(900 pages) it 
annot be presented in its entirety in this thesis.The MOOSE framework is broad enough to 
apture a variety of physi
al phe-nomena in the modeling of steady state, and transient �nite di�eren
e models. Thefo
us has been on ellipti
 and paraboli
 problems whi
h 
an be represented on anon-
onformal pat
hed Cartesian mesh whi
h permits motion in two dimensions. Asa general framework there is 
ertainly room for expansion into other 
ategories ofphysi
al problems. 80
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al and Computer EngineeringThe MOOSE framework supports the following prin
iple 
omponents:
• User Interfa
e
• Graphi
al output
• Mesh Constru
tion Algorithms
• Symboli
 Problem Representation
• Interfa
es to State of the Art Linear and Eigenvalue SolversThe MOOSE prototype has employed a variety of advan
ed implementation te
h-niques:
• Mix of implementation languages, in
luding C, C++, MAPLE and variouss
ripts
• Code generation
• Symboli
 Pro
essingThe prototype implementation has fo
used on translating the user supplied symboli
representation of a problem into an e�
ient matrix generation program. The ma-trix generator, 
reated by the MOOSE, rapidly builds a 
olle
tion of sparse matri
esand ve
tors using standard data stru
tures whi
h are 
ompatible with various highperforman
e numeri
al libraries.For the purposes of writing a thesis several limitations were imposed on the de-velopment of the MOOSE to keep the proje
t manageable. The user interfa
e whi
hwas developed is quite simple. The MOOSE framework may be suitable for a varietyof problem domains but only rea
tor physi
s problems are examined in detail in sub-sequent 
hapters. Geometry in the MOOSE is limited to re
tangular two dimensionalmeshes and problems whi
h model motion in verti
al or horizontal dire
tions.81
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tion presents the 
on
eptual breakdown of physi
al models used by the MOOSEfrom both a terminologi
al and relational standpoint. At the same time the followingset of terminology is generi
 enough that it 
an be applied to other problems as willbe dis
ussed in 
hapter 4.Simulations are 
onstru
ted from a 
olle
tion of individual 
ells. A 
ell is thebasi
 unit of the MOOSE's simulation. A 
ell depends on the de�nition of three otherprin
iple stru
tures:
• A set of variables
• A set of 
onstants
• A physi
al linear equation whi
h relates the variables and 
onstantsThe set of variables 
an be de�ned by the user and it in
ludes whatever the user isinterested in modeling. Typi
al 
ell stru
ture variables for a nu
lear simulation mightin
lude:
• Temperatures
• Rate of Flow
• Flux Density
• Pre
ursor Density
• Fuel Burn-up
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an be represented as ve
tors. In the 
ase of �ux density subs
ripts 
anrepresent various energy levels, although pre
isely how this representation is a

om-plished is left to the model designer. Zero, one or two subs
ripts are supported bythe MOOSE for any 
ell variable.A 
ell also has asso
iated with it a set of 
onstants. Constants are assumed to havesome spatial variation in the represented artifa
t. For example, there is no advantageto asso
iating the speed of light with a 
ell. Su
h universal 
onstants 
an be spe
i�edindependently of the 
ell de�nition if they are to be uniform throughout the simulatedgeometry.Ea
h 
ell also has asso
iated with it at least one equation, whi
h typi
ally will bea partial di�erential equation represented in �nite di�eren
e form. There is no limiton the number of equations that 
an be represented in a 
ell. Spatial referen
es arelimited to 
ell neighbours and are handled by spe
ial operators whi
h are supplied bythe MOOSE for �nite di�eren
e approximations to �rst and se
ond derivatives. Usersmay de�ne initial 
onditions for time integration problems, or boundary 
onditions ofany type for steady state problems. The MOOSE 
an be used to solve linear problemsof the form of Ax = b, standard eigenvalue problems Ax = kx or general eigenvalueproblems Ax = kBx.Maps are geometri
 
olle
tions of 
ells that spe
ify their relative position of ea
h
ell within a map. The MOOSE only supports Cartesian maps, but allows mapde�nitions to be nested and repeated under 
ertain 
ir
umstan
es. This allows a userto de�ne a geometri
ally 
ompli
ated stru
ture, and then repeat that stru
ture in the
ontext of a higher level map.Motion is a
hieved by the MOOSE through the relative motion of maps. AMOOSE simulation 
an build a sequen
e of interdependent solutions. Ea
h step inthe sequen
e 
an involve the translation of a map or rede�nition of a 
ell. Simulation83
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an refer to ea
h other as determined by de�nitions imposed by the user.3.3 MOOSE FrameworkThis se
tion presents the basi
 elements of the MOOSE's framework des
ribes howea
h element 
onne
ts with its neighbour. Se
tion 3.4 and se
tion 3.5 will dis
uss inmore detail some of the pra
ti
al problems en
ountered during the 
onstru
tion ofthe prototype. Some of the details presented in this se
tion are a ne
essary 
onse-quen
e of fundamental design 
hoi
es, for example, the systems of interest are alwaysrepresented by sparse matri
es so only sparse numeri
al libraries are dis
ussed. Oth-ers design details were a matter a 
hoi
e, in some 
ases with the goal of minimizingimplementation e�ort, for example the redu
ed and simpli�ed text interfa
e.3.3.1 Framework OverviewThe MOOSE is a reusable framework for the 
onstru
tion of programs that 
an modelvarious simulation s
enarios involving moving 
omponents. As a framework it presentsa 
olle
tion of abstra
t 
lasses whi
h 
an be 
on
retized by the user. The MOOSEsupplies the user with a 
olle
tion of run time libraries to link their simulation against,some of whi
h are external mathemati
al libraries, others are MOOSE appli
ationspe
i�
. In addition to supplying the user with libraries the MOOSE also suppliesthe user with several exe
utable programs for simulation 
on�guration �le editing and
ode generation. The major elements of a MOOSE simulation are pi
tured in Figure3.1.The user interfa
e dis
ussed in se
tion 3.3.2 provides the main 
on�guration por-tal to the MOOSE. The user needs to supply 
ell de�nitions, map de�nitions as wellas a simple C program that dire
ts the exe
ution of the simulation. Ea
h of these84
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MOOSE libs

External Mathematical Libraries

Simulation
Results

Compiler/Linker

User Supplied main.c

Map Class Generator

Matrix Generator

User Interface

Executable
Simulation

Figure 3.1: MOOSE Framework Overviewelements is organized through the user interfa
e. The matrix generator is built froma 
olle
tion of MAPLE s
ripts. The matrix generator reads 
on�guration �les whi
hare generated by the user interfa
e. The matrix generator is responsible for extra
tingthe partial di�erential equation de�nitions from those �les and building a C program
apable of interfa
ing with the solvers upon whi
h the MOOSE is based. A matrixgeneration fun
tion is required for ea
h data stru
ture type and ea
h partial di�eren-tial equation set. Maps whi
h share PDE and data stru
ture types will use the samematrix generation fun
tion to build their partial representation of the sparse matrix.Multiple PDE de�nitions are possible, as well as multiple data stru
ture de�nitions,so one simulation model may require many matrix generation fun
tions.Ea
h MOOSE map is de�ned as a C 
lass whi
h inherits its major fun
tions froma parent 
lass de�ned as part of the MOOSE libraries. Ea
h map sub
lass 
ontainssome spe
i�
 fun
tions whi
h are parti
ular to the data stru
tures represented by the85
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lass. The map layout is stored in the sub
lass fun
tions. The generi
 fun
tionswhi
h 
an be applied to any map 
lass are de�ned as part of the map base 
lass.The MOOSE libraries provide user level a

ess to both the mathemati
al librariesas well as simpli�ed interfa
es to the MOOSE data stru
tures. The MOOSE librariesalso provide an interfa
e between the matrix generator and the external libraries.Additional details whi
h des
ribe the MOOSE's mathemati
al library interfa
e arepresented in se
tion 3.4.1.The MOOSE libraries give the user simpli�ed a

ess to ea
h map. Maps 
anbe identi�ed either by name (for example �grid_map�), or by 
oordinate position.While a variety of automati
 graphi
al output options exist as part of the MOOSEpa
kage as dis
ussed in se
tion 3.3.4, the user 
an also extra
t individual �oatingpoint numbers from the simulated mesh or spe
i�
 eigenvalues. A

ess fun
tionswhi
h request ve
tor minimums and maximums are also available as well as fun
tionsfor manipulating spe
i�
 mesh elements as des
ribed in se
tion 3.3.3. In prin
ipleany result generated during the solution pro
ess 
an be extra
ted from the MOOSE'sfundamental data stru
tures. The matri
es, ve
tors, or any solution ve
tor value maybe extra
ted. Using the MOOSE data a

ess routines puts ve
tor values in 
ontextand interpolates between values if ne
essary.3.3.2 User Interfa
eDeveloping a robust and well designed interfa
e is a 
omplex task and was not thefo
us of this thesis. However, in the spirit of a PSE development proje
t it was feltthat at least a very simple prototype interfa
e was ne
essary.The MOOSE de�nes various input parameters through the use of a 
olle
tion of
on�guration �les. In prin
iple a MOOSE simulation only needs a text editor to set86
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Figure 3.2: Cell Editorup its various 
omponents.For example 
ells are de�ned by a simple stru
ture �le whi
h looks like this:rs_
ell MOD ss_13_pdef mphy {"default_mp.
"} default_
el;The MOOSE 
ode generator interprets this de
laration and reads it as a sequen
eof �elds. The �rst �eld rs_
ell identi�es this as a 
ell de
laration, the se
ond �eldnotes the materials stru
ture to be used, the third �eld notes the property de�nition,the quoted name within the parenthesis 
ontains the �le name whi
h the MOOSEwill use to de�ne the partial di�erential equations, and �nally the name of the 
ell isgiven in the last �eld.The prototype for the MOOSE in
ludes a 
ell stru
ture editor whi
h allows theuser to enter ea
h of these �elds with a little guidan
e. For example the 
ell editor willprovide a list of names of valid material stru
tures or property de�nition stru
tureson request. 87
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Figure 3.3: Map EditorMaps are de�ned by text �les. The grid map is understood to be the top levelmap in any simulation, mu
h like the main() fun
tion of a C program. Sin
e maps arehierar
hi
al in nature only the lowest level maps are de�ned in terms of basi
 
ells.The prototype MOOSE map editor renders the 
on�guration �le in a naturallooking way. Ea
h individual map is assigned a 
olor to help distinguish it from itsneighbours. Submap names are so they are 
learly identi�ed. The editing sessionshown in Figure 3.3 
orresponds to the already presented grid_map stru
ture. Thesimulation being edited de
omposes the geometri
 problem into a sequen
e of adja
entverti
al strips. Ea
h map shown in the editor's window has a 
ellular de�nition, whi
hmust also be de�ned in a separate window. Ea
h verti
al strip represents a di�erentpart of the simulation.Every MOOSE simulation requires a short 
ode segment. The user supplied 
odewhi
h a

ompanies a MOOSE simulation 
an spe
ify a variety of pre
ise geometri
details at run time. For example, if the exa
t dimensions or position of the simula-88
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omponents 
annot be reasonably represented by the user interfa
e they 
an beadjusted during model exe
ution.The prototype user interfa
e in
ludes 6 main menu with various submenus head-ings:
• File� submenus: Open Proje
t, Close Proje
t, Delete �le/output, Re
over DeletedFile, Reload libraries, Dire
tory Editor, Set Proje
t Read Only, Quit, FileHelp
• Edit� submenus: Edit File, Edit Map, Edit Cell, Edit Stru
ture, Edit Materials,Edit Physi
s, Edit C sour
e, Edit Font, Edit Help
• View� submenus: Compilation Warnings/Errors, Con�guration Errors, Map De-penden
y Graph, Run Time Errors, Run Time I/O, View Help
• Run� submenus: Make all and Run, Make sim.
onf, Make C++ Sour
e, Makesim Exe
utable, For
e Full Rebuild, Run Sim, Debug Crashed Sim, RunHelp
• Render� submenus: Show Output URL, Render Help89
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• Help� submenus: About, Contents, Keyword, Man pageEa
h menu item is a
tive in the prototype. The File, and Help items are relativelyself explanatory and follow typi
al designs in other programs. The Edit menu optionslaun
h various stru
turally spe
i�
 editors. The 
ell and map editor have already beendis
ussed. In addition the prototype supplies a stru
ture editor, a materials editorand a font editor. The Run menu provides various 
ode generating and exe
utionoptions.The prototype editor was given only a low priority in terms of development. Al-though it 
omprises about 25% of the entire 
ode base (11,000 lines), building it
onsumed less than 10% of the total development time sin
e it was the least sophis-ti
ated element of the framework.3.3.3 Operations for Moving Model ComponentsFor model submeshes to be moved several fundamental operations on the relativeposition and proportion of mesh 
omponents are required. Within the prototypethese operations are implemented as fun
tions that 
an be 
alled by the user afterthe initial mesh is built with the interfa
e, but prior to generating a solution. Withina more developed PSE these operations 
ould be built into a detailed graphi
al userinterfa
e, whi
h 
ould infer their use through a sequen
e of positions that the userspe
i�ed for the model. The 
urrent user interfa
e is not sophisti
ated enough tosupport the spe
i�
ation of a sequen
e of motion points.Five operations are required for moving model 
omponents:
• Move Grid to absolute position 90
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• Move Grid Relative to 
urrent position
• Res
ale Grid
• Get Grid Position
• Remesh GridSin
e meshes within the MOOSE 
an be nested hierar
hi
ally ea
h of these operations,when applied to a given mesh, will also be applied to ea
h of its submeshes. This ishelpful sin
e it allows the 
onstru
tion of 
omponents from 
olle
tions of submesheswhi
h will behave in an expe
ted way when an operation is applied to a parent.Two operations for motion are provided, one whi
h takes absolute positions inthe overall parent mesh, and a se
ond one whi
h moves 
omponents relative to oldpositions. User fun
tions may need to link the movement of otherwise un
onne
tedmesh 
omponents. To fa
ilitate this a fun
tion whi
h reads grid positions is alsoprovided.Res
aling a mesh 
hanges its dimensions, either its width or length, or both.Res
aling operations may be required to represent a variety of zones within a sim-ulation whi
h must gradually re
ede to allow a simulation 
omponent to move intoa new geometri
 spa
e. Squashing or stret
hing a region by only small degrees willhave a minimalisti
 impa
t on a simulations if the region is 
ontinuous in terms of itsmaterial and PDE de�nitions.It is always possible to rede�ne the mesh density for either the entire geometri
de�nition, or at 
ertain sub blo
ks of a given simulation. In
reasing the mesh densityeither lo
ally or globally is an important operation be
ause it allows the user to make
ertain de
isions regarding the overall pre
ision of the model. In the validation 
hapterseveral models are tested at various ranges of mesh densities. Models may also require91
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Figure 3.4: Example Thermal Plotvery lo
alized remeshing. Being able to spe
ify whi
h areas of the model require extramesh points allows the user to fo
us the mesh on spe
i�
 areas of interest or areaswhi
h are known to be troublesome.3.3.4 Output OptionsThe MOOSE provides a variety of output options whi
h automate the generation ofgraphi
s. The MOOSE's output library generates line and surfa
e plots whi
h areembedded in HTML �les and pla
ed in the users publi
_html dire
tory, organized by92
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Figure 3.5: Example Surfa
e Plotproje
t and simulation run. Several output graphi
 styles are supported, the thermaland 
ell styles are provided by the MOOSE framework. The MOOSE is also able tospawn other plotting pa
kages. GNUPLOT 
an be used by the MOOSE to generatea broad range of additional plot styles. The fun
tions whi
h link GNUPLOT to theMOOSE 
ould in prin
iple be easily extended to support other pa
kages.Figure 3.4 shows an example thermal plot for the rod insertion problem. This plotrenders �ux levels for the �rst energy group as 
olors, a legend beside the graphi
gives an indi
ation of the s
ale. This plot shows where the 
ell boundaries are (lightgrey lines) as well as where the material boundaries are (white lines). Lo
ating thematerial boundaries and the 
ell boundaries is important for model debugging and
onstru
tion. The various labels and legends surrounding the plot are generated bythe MOOSE's line and text drawing pa
kages. Transparent frames are pla
ed under93
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hanges 
olors the text remains visible. Themini-graph plotted in the lower left of the �gure shows the shape of the thermalgraph plotted as a unitless line graph for 
omparison with the thermal graph. This�gure represents a single frame from a transient simulation dis
ussed in more detailin 
hapter 5. The slow motion label refers to the frame rate, this simulation wasrendered at 12 frames per se
ond in a standard .AVI �le. During the ex
ursion 60frames were rendered for ea
h se
ond of simulation time, when replayed at 12 framesper se
ond this produ
ed a slow motion e�e
t in the video.A surfa
e style rendering of the same data generated by GNUPLOT via theMOOSE is illustrated in Figure 3.5. GNUPLOT o�ers a variety of other plot me
ha-nisms many of whi
h are also in
orporated into the MOOSE in
luding line plots and
ontour plots. The MOOSE also provides a simple me
hanism to in
lude GNUPLOT
ommands so that if the user is familiar with GNUPLOT additional labels and othergraphi
al details provided by GNUPLOT 
an be in
orporated.3.4 Implementation Languages and MethodologyThe MOOSE is written in several di�erent languages and uses a variety of libraries,s
ript interpreters, and helper appli
ations to allow it to a

omplish its simulation ob-je
tives. In the last 20 years a wide variety of programming languages and methodshave 
ome into 
ommon use. Along with very 
ommon and well established lan-guages like FORTRAN and C, several methodologies have 
ome into popular usagelike parallel programming and obje
t oriented programming. Advan
ed te
hniqueslike 
ode generation and symboli
 manipulation have also be
ome more 
ommon inre
ent years. The MOOSE borrows from many di�erent paradigms in the attempt tosatisfy a wide variety of needs. To some extent the implementation of the MOOSE94
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ts of the MOOSE aremore su

essful than others in this regard. This se
tion will brie�y tou
h on some ofthe more unusual aspe
ts of the design of the MOOSE.3.4.1 Library Interfa
esThe MOOSE relies on several numeri
 solution libraries to generate solutions to theproblems en
oded by the user. Two basi
 assumptions are made: the problem isalways assumed to be sparse, and the problem is always assumed to be governed bylinear relationships.PETS
 [19℄ is a well known linear solver developed at the Argonne National Lab-oratory by the Mathemati
s and Computer S
ien
e division. PETS
 
an operate ineither uni-pro
essor or multi-pro
essor modes. At its 
ore it provides the user witha variety of methods and data stru
tures for representing sparse linear matri
es and
an generate solutions to those matri
es through a 
olle
tion of well understood algo-rithms, most notably Conjugate Gradient and GMRES.SLEP
 [79, 80, 81℄ is an eigenvalue solver whi
h is based on PETS
. SLEP
uses the data stru
tures and software design methodology of PETS
 for the solutionof eigenvalue problems of both the standard Ax = b and the general Ax = kBxvarieties.Although these 2 solvers have proved to be the most useful, the MOOSE's sparsesolver interfa
e is not tightly tied to either pa
kage. The MOOSE only requires apa
kage whi
h supports any rough variation of the following set of basi
 fun
tion
alls: Initialize_Solver()Matrix_Create(size) 95
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tor_Create(size)Matrix_Add(row,
ol,element)Ve
tor_Add(
ol,element)LinearSolve(Matrix,ve
torB,ve
torX)EigenSolve(MatrixA,MatrixB,ve
torX)The generated 
ode makes 
alls to these simpli�ed virtual fun
tions. A software layerexists between the generated 
ode and the library pa
kage to fa
ilitate these 
alls.PETS
 requires several steps in the 
reation of a matrix, so the MOOSE has a spe
ialversion of Matrix_Create() whi
h handles all of the 
alls required by PETS
. Inthis way the MOOSE is solver pa
kage independent. The more rudimentary pa
kageLASPACK, 
an also be used by the MOOSE, to enable this pa
kage the appropriate�ag is set prior to 
ompilation, and when the fundamental fun
tions are 
alled theMOOSE uses basi
 fun
tion 
alls appropriate to LASPACK.As a pair, SLEP
 and PETS
 are quite �exible so most of the development of theMOOSE was driven by their solution strategies. SLEP
 and PETS
 are themselvesbased on other pa
kages and 
an also a
t as interfa
es to other pa
kages. SLEP
 andPETS
 are based on the dense linear solver pa
kages LAPACK (note that LASPACKand LAPACK are unrelated) as well as a generi
 BLAS pa
kage. Hardware spe
i�
versions of LAPACK and BLAS are available. The MOOSE was developed witha high performan
e platform independent BLAS known as ATLAS (Automati
allyTuned Linear Algebra).The most re
ent version of SLEP
 in
ludes a Krylov-S
hur solution method [152℄.The SLEP
 authors 
urrently re
ommend the Krylov S
hur method as the default
hoi
e. Re
ent experimental tests with the MOOSE 
on�rm that this is the best
hoi
e. PETS
 provides interfa
es to a variety of other pa
kages. SuperLU [48℄96
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t linear solver that also has a distributed version, SuperLU_DIST.SuperLU 
an be transparently built alongside of PETS
, and provides a dire
t methodfor inverting sparse matri
es.The dire
t solver often found solutions to problems mu
h faster than the iterativesolver and its results were often more pre
ise, although the dire
t solver tended to uselarger amounts of memory than the sparse solvers. Both solution methods proved tobe useful in generating �nal results. In some 
ases, espe
ially the steady state studieswhere high degrees of pre
ision where essential, the dire
t solver was the most useful.In transient 
ases the iterative solver seemed to be more useful.3.4.2 Merging MAPLE, C, FORTRAN and Other LanguagesThe MOOSE is built from several di�erent languages. Ea
h was sele
ted for itsdominan
e in a parti
ular domain and its appli
ability to a parti
ular developmentgoal. Be
ause the MOOSE aspired to be both 
apable of solving very 
omputationallydemanding problems as well as �exible and malleable, no single language seemedappropriate for its implementation. The MOOSE interfa
es to a variety of externallibraries. Some are written in C, some in C++, and some in FORTRAN. Most of thesolving power of the MOOSE is leveraged from PETS
 and SLEP
, whi
h themselvesare built on other libraries. Lega
y FORTRAN77 solvers like ARPACK [165℄ area

essed via SLEP
's interfa
e. To a large extent the developers of PETS
 and SLEP
have seamlessly merged their libraries with the underlying FORTRAN 
ode. Whileit is of some interest to re
ognize the important presen
e of FORTRAN librariesunderneath the MOOSE, FORTRAN 
ode is 
ompletely hidden by the libraries whi
hutilize it.The MOOSE's user level programmer interfa
e is written in C and MAPLE. The97
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 text GUI is a C++ program whi
h laun
hes the various 
ode generators, inter-preters and 
ompilers. The MAPLE matrix generator a
ts as the equation and datastru
ture interpreter for the MOOSE. MAPLE is typi
ally thought of as a symboli
pro
essing language for solving 
ertain 
ontinuous integrals in 
al
ulus. MAPLE was
hosen for this proje
t be
ause it also provides a powerful s
ripting language whi
his adept at symboli
 manipulation. Be
ause MAPLE is a s
ripting language, the sizeof a task that 
an be solved with a MAPLE s
ript is somewhat limited, and so theMOOSE 
annot use MAPLE to analyti
ally or dire
tly solve the supplied system ofequations. Instead the MOOSE uses a program written in MAPLE, the matrix gen-erator, to translate a problem expressed in a symboli
 
ontinuous representation intoa C++ program 
apable of generating a matrix whi
h approximates the 
ontinuousproblem in a �nite di�eren
ed form. The generated program is 
ompiled by g

, anda spe
ial fun
tion is 
onstru
ted for ea
h simulation whi
h 
an be 
alled repeatedly.This fun
tion must be de�ned before simulation 
ompile time.Although the equations and data stru
tures as spe
i�ed by the user are �xed on
ethe exe
ution of the simulation begins, various simple parameters 
an still be ad-justed; the 
oe�
ients of di�usion, the size of the region that is being solved for, orthe magnitude of a time step. The user is allowed any number of equation de�nitionsprior to simulation exe
ution via the equation group parameter. So if a physi
al modelrequires a sequen
e of appli
ations of alternating representations, say for example ina Bla
k/White style Leap Frog method, this 
an also be a

omplished. The MOOSEuses a C++ hierar
hi
al obje
t oriented representation of the model for the purposeof matrix generation and overall data organization. The user a

esses top level obje
tmethods through a simpli�ed C interfa
e. While the MOOSE is written in C++,an understanding of C++ is not required to be able to 
onstru
t models with theMOOSE. Similarly PDEs expressed in MOOSE syntax require only the most rudi-98
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onventions. Where possible, syntax 
onventionsfor the MOOSE's interpretation of PDE's was sele
ted so that it would appear similarto C.3.4.3 Code GenerationCode generation [22, 28, 29, 37, 43, 44, 59, 63, 82, 100, 107, 143, 167℄ as a te
hniqueoverlaps to some degree with 
ompilation. The prin
iple di�eren
es between the twomethodologies are normally found in s
ope and intention. While a 
ompiler takesthe symbols from one general purpose language and 
onverts them into the symbolsof another general purpose language (for example a program whi
h 
onverts C intoassembly), the role of 
ode generation is more oblique and often very task spe
i�
.Code generation will often imply a 
ertain trade o� involving 
omplexity sizeor speed. It 
an be a very 
ompli
ated option to 
hoose, so the advantages anddisadvantages should be 
arefully 
onsidered before it is undertaken. Consider ave
tor-based drawing pa
kage where a user draws shapes with 
onne
ting ar
s andlines by spe
ifying verti
es with a mouse. An obvious way to re
ord the image wouldbe to simply save this list of verti
es and note their 
onne
tion order. Re
onstru
tingthis image would require the use of the same general purpose program whi
h saved it.If the drawing program used 
ode generation to save its �les, instead of simplysaving the list of verti
es, it 
ould save in sour
e 
ode a sequen
e of fun
tion 
allsne
essary to redraw the image. In this way the image 
ould be transmitted to anotheruser who did not have the same general purpose data �le reader. The result of theprogram generator might be smaller, simpler or faster than the general purpose data�le reader. The generated program would not be smaller than the simple data �lewhi
h stored verti
es, and the 
ode whi
h built the generated program would also be99
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ompli
ated to implement than the 
ode whi
h simply saved a list of datapoints.While 
ode generation is intriguing as a program design methodology it has awide variety of asso
iated pitfalls that need to be avoided. The biggest problem with
ode generation is that while the 
ode generator may seem to be generating 
odewithout any di�
ulty, �xing a bug in the 
ode generator's progeny is not so simpleas starting up a debugger and looking for mistakes. Any �aw in the 
hild is 
orre
tedby 
arefully studying the parent. The notion of 
ode generation as an option forprogram developers is a relatively re
ent one and as su
h there are few tools availableto assist with the task. The MOOSE's 
ode generator is built with large 
olle
tionsof simple formatted print statements. Lines of C 
ode are 
onstru
ted as strings bythe MOOSE's 
ode generation modules and written to �les for later 
ompilation.Code generation be
ame ne
essary for the MOOSE framework be
ause whileMAPLE had general �exibility in terms of symboli
 manipulation, it la
ked the exe-
ution speed ne
essary to generate large matri
es. PETS
 and SLEP
, the solvers ofinterest, provided C++ interfa
es only. While the matri
es of interest 
ould 
ertainlybe hard 
oded in C++ for spe
i�
 problems, given the low level and both rudimen-tary and stri
t variable typing system used by C++, the job of manipulating datastru
tures and equations was quite onerous.Code generation then be
ame the bridge between the two languages. The matrixgeneration program builds a naive but very fast fun
tion 
ompatible with the MOOSEC++ libraries. This fun
tion 
an be 
ompiled and 
alled by the MOOSE and usedto 
onstru
tion matrix ve
tor pairs in a data stru
ture format whi
h was 
ompatiblewith the numeri
al solvers. The fun
tion generated by the matrix 
ode generationprogram is �exible enough that a variety of model modi�
ations 
an be done withoutregenerating the 
ode for 
onstru
ting the matrix. Some example 
ode generated by100
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MOOSE Simulation Group

Group Traits

Member 1 Member 2 Member 3 Member n

Copy 1 Copy 2

Copy n

Copy 1 Copy 2

Copy n

Copy 1 Copy 2

Copy n

Copy 1 Copy 2

Copy nFigure 3.6: MOOSE Family Stru
turethe MOOSE is presented in the Appendi
es 3, the PDEs whi
h were used to generatethis 
ode are presented in Appendix 2.3.4.4 MOOSE's Simulation GroupsA single MOOSE simulation proje
t 
an be 
on�gured as a group of related problemswhi
h share the same main traits 
hara
terized by the geometry and 
ontrol software.Ea
h simulation group member may however express its own spe
i�
 traits in terms ofwhi
h data stru
tures, partial di�erential equations and solution te
hniques it applies.A simulation proje
t may simultaneously de�ne multiple group members prior to
ompile time.Ea
h group member uses the same geometry. The simulation group de�nes aninitial position for all moving 
omponents, as well as provides a 
on
rete name for ea
h
ell grouping within the geometry for all group members. Group members di�erentiatethemselves by using di�erent de�nitions for the 
olle
tion and arrangement of 
ellswhi
h de�nes the group. Some traits, in parti
ular those whi
h determine the pre
ise
hoi
e of PDEs for a given data stru
ture, 
an be expressed sele
tively at run time.101
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all that the 
ell de�nes data stru
tures, materials, and PDEs used at ea
h lo
ation.Other traits, like for example the size of the data stru
tures used to represent themodel, must be 
hosen prior to run time.Ea
h group member uses the same general 
ellular stru
ture of the group. Forexample, a group of simulations might all de�ne the 
entral region of the geometryas o

upied by 
ells named �
ore�. Exa
tly whi
h de�nition for the 
ore 
ells is beingused will be determined by whi
h group member is sele
ted. A very simple de�nitionmight negle
t 
ertain parts of the physi
al model whi
h other members 
ould in
lude.Simulations 
an also 
opy themselves. Copying a simulation member means 
re-ating data stru
tures and fun
tions 
apable of generating matri
es, as well as ve
tors
apable of storing solutions. Steady state problems usually do not use 
opies, a singleinstan
e of a matrix ve
tor pair is normally su�
ient to solve a steady state simula-tion. Transient simulations whi
h need to have multiple spatial referen
es will often
reate several 
opies. A transient simulation whi
h uses a multi-step integration te
h-nique will need a 
opy of the variable spa
e for ea
h stage in its integration. Re
allthe dis
ussion of multi-step methods from Chapter 2 where a history of points wasmaintained. The history is 
reated in the MOOSE data stru
tures by 
onstru
tingmultiple 
opies of the simulation solution matrix and ve
tor. Ea
h 
opy of the solutionve
tor is assigned an index whi
h relates it to an instan
e in time.These 
on
epts are perhaps best illustrated with a simulation example. Supposethat an engineer is interested in modeling a nu
lear rea
tor 
ore, but is unsure ofexa
tly how to 
alibrate the model so it is pre
ise enough to 
apture the variousfeatures of interest. In order to set up a transient model the simulation engineermust �rst study the steady state 
ase. The transient model requires a di�erent set ofPDEs and extra variables to model the same s
enario as the steady state eigenvalueproblem. The transient model will also require several 
opies of the ve
tor spa
e to102
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ase study presented in Chapter 5. Example equations are presented in Appendix2. To a

omplish this the engineer 
onstru
ts a simulation group by spe
ifying thelayout of the 
ells for the rea
tor model. Some 
ells represent the 
ore, others representthe moderator. The physi
s and 
onstants whi
h represent these elements 
an bespe
i�ed from �rst prin
iples in the 
urrent implementation of the MOOSE. Somespe
ial 
ells represent moving 
omponents. A proto
ol to initialize the simulation aswell as a de�nition of the run time pla
ement of 
omponents must also be established.These global simulation elements are represented by the box at the top of Figure 3.7.The individual group members are 
onstru
ted by 
reating di�erent formulationsof the physi
al model. One simulation group member is used to model the steady stateproblem, the other two simulation group members will be used to examine variationson the transient problem. A trapezoidal transient integration s
heme although stable,is not ne
essarily the most e�
ient. A multi-value transient integration s
heme whi
hmaintains a history of multiple derivatives 
an potentially take mu
h larger steps thana trapezoidal s
heme and hen
e will require less exe
ution time although has moredemanding memory requirements. These various formulations will determine the sizeof the data stru
tures, they are pi
tured in Figure 3.7, labeled as A, B and C.Simulation A implements a �ve group steady state nu
lear di�usion problem. 5variables per 
ell are required, one to represent ea
h of the 5 energy states of the �ux.This model is developed in detail in the �rst part of Chapter 5 whi
h examines thesteady state simulations of the MNR. Simulation B requires 6 pre
ursor groups tobe represented in addition to the 5 energy groups for a total of 11 variables per 
ell.In addition to the 11 variables required by sibling B, simulation C also requires anadditional 15 variables to keep tra
k of the se
ond, third and fourth derivatives with103
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t to time of ea
h �ux energy group for a total of 26 variables. Simulation C isdis
ussed in detail in the se
ond part of Chapter 5.Simulation A only shares geometry and 
ontrol traits with its other group mem-bers. Although simulation B and C use di�erent transient order integration s
hemes(labeled 1) they use a 
ommon initialization method (labeled 2). Certain elements ofthe de�nition of their partial di�erential equations are identi
al as expressed by theseequations. While individual simulation de�nitions whi
h determine data stru
turesize must be sele
ted at 
ompile time, the sele
tion of individual PDEs may be doneat run time. Simulation B and C must initialize their history prior to exe
ution. Thisis done by solving a set of equations whi
h assume that all rates of 
hange of �ux levelsare zero. In the 
ontext of the parti
ular example a low power steady state solutionis needed to prime the history for both the neutron �ux and the delayed pre
ursors.Transient simulations, like B and C, typi
ally require the 
reation of a 
opy of thesystem. Re
all that a 
opy means a dupli
ate of the entire ve
tor representing thevariables for the simulation, as well as a separate instan
e of the matrix used to solvethat ve
tor. Transient formulations 
an be written in a very general way as
φn+1 = φn +

dφ

dt
△ t (3.1)Rather than maintaining all solution ve
tors 1 through n, whi
h would representea
h time step taken by the model, a pair of problems is solved in a 
y
li
 sequen
e

φ1 = φ2 +
dφ

dt
△ t (3.2)

φ2 = φ1 +
dφ

dt
△ t (3.3)105
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opy either, 1 or 2. The simulation engineer isresponsible for setting up the time mar
hing algorithm and spe
ifying the details ofthe integration method through the PDEs. Typi
ally equation 3.2 is solved followedby adjusting the time step or 
omponent positions after whi
h equation 3.3 is solved.This pro
ess is repeated for every step in the simulation. Many problems 
an besolved with just one extra 
opy although in some s
enarios, like for example a multi-step simulation, several may be required depending on the spe
i�
 details of theproblem.Having de�ned the above simulation group, the simulation engineer now has threetools to investigate a moving mesh problem. The �rst tool, a steady state model,
an be used to study still snapshots of the system. The two transient models providealternate integration te
hniques. If memory is an issue it may not be possible to usethe multi-value methods, if however stability or pre
ision are issues then the simplertrapezoid model may be inappropriate. Being able to easily swit
h between subtlemodel variations is one of the fundamental strengths provided by a general framework.Additional examples whi
h show how the MOOSE 
ommands fun
tion is presentedin Chapter 4.3.5 Mathemati
al Prin
iples Behind the MOOSEMost of the mathemati
al prin
iples implemented as part of the MOOSE are standardmethods whi
h were dis
ussed in Chapter 2 and should be a

essible to pra
titionersa
ross a variety of �elds. Sin
e the MOOSE has taken the approa
h advo
ated by re-sear
hers interested in problem solving environments, the MOOSE pa
kages togethermany di�erent te
hniques. The MOOSE promotes the position that engineering toolsshould be built for reuse rather than single use. Re-usability and 
on�gurability when106
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ri�
ing other desirable traits like e�
ien
y or portability give atool-set a marked advantage over other methodologies.Se
tion 3.5.1 will des
ribe in some detail how the MOOSE generates matri
es
ompatible with high-performan
e solution libraries from user de�ned input �les. Theremaining se
tions in this 
hapter present a 
olle
tion of novel te
hniques mesh linkingte
hniques implemented within the MOOSE whi
h fa
ilitate a high degree of a

ura
yin the results generated by the MOOSE.3.5.1 Translating PDEs into Matrix Generating Fun
tionsPart of the goal of the proje
t is to take advantage of the highest performan
e solversavailable, it is ne
essary for the MOOSE to generate a representation of the physi
alsystem of interest in terms that the solvers 
an pro
ess. The MOOSE must be able totake any physi
al equation and translate it into a sparse matrix whi
h 
an be easilypro
essed by an existing pa
kage.The MOOSE targets problems whi
h exhibit motion; thus the MOOSE may berequired to generate a new matrix for every step in the 
al
ulation. Matri
es withmillions of elements 
annot be e�
iently generated by a s
ripting language like MAT-LAB, but a C or C++ program whi
h links dire
tly to a sparse solver pa
kage 
angenerate thousands or potentially millions of matri
es as part of a transient 
al
ula-tion.One of the di�
ulties in working with the neutron di�usion equation is that mostof the physi
s is embedded within the multi-dimensional 
onstants. Exa
tly whatthe 
onstants represent, how they are 
omputed, and how many of them are used issomething whi
h is best left to the physi
ist.The multi-dimensional nature of the neutron di�usion equation 
reates other 
om-107
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al systems it is possible to write a single matrixgenerator and allow its parametrization through adjustable physi
al 
onstants, this isnot the 
ase for the neutron di�usion equation. To develop a program whi
h generatesa sparse matrix version of the neutron di�usion equation, �exible data stru
tures andfree form equation representation is required. While 2, 4, 8 and 12 energy groups aretypi
al division in neutron di�usion studies any number of groups are possible, andthe equation generator should be adaptable enough that it imposes as few restri
tionsas is possible.Take for example a steady state version of the multigroup neutron di�usion equa-tion for whi
h the modeler has 
hosen to ignore ups
atter, whi
h was dis
ussed indetail in Chapter 2, written as
−▽ ·Dg ▽ φg + ΣRgφg −

g−1∑

g′=1

ΣSg′gφg′ = K · χg

G∑

g′=1

υΣfgφg′ (3.4)The symbols D, χ, ΣR, Σs and υΣf are spatially determined 
onstants. K is theeigenvalue to be solved for. The main parameter of this equation is the energy groupdivision number G whi
h determines how many equations are represented and theexa
t stru
ture that those equations will take.If a system is 
onstru
ted with G = 2 a pair of equations results
−▽ ·D1 ▽ φ1 + ΣR1φ1 = K · χ1

G∑

g′=1

υΣf1φg′ (3.5)
−▽ ·D2 ▽ φ2 + ΣR2φ2 − ΣS12φ1 = 0 (3.6)When G = 2, typi
ally, χ2 = 0, so this term was left out of the se
ond equation.The stru
ture of ea
h equation is dependent on G, and simultaneous solutions to108
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attering term. When it is written as ∑g−1
g′=1 ΣSg′gφg′it represents down-s
atter only. This term may also be more generally written withfull up-s
atter and down s
atter as ∑G

g′=1 ΣSg′gφg′, or more 
onservatively with down-s
atter to one group only as ΣS(g−1)gφg−1. The syntax for the MOOSE has beendeveloped to be generi
 enough to 
apture all of these representations, although noneof them are hard 
oded into the MOOSE.In MOOSE notation the neutron di�usion equation with down s
attering only isexpressed as:seq([- LAPL(D*Phi[g℄) + Phi[g℄*Sigma_r[g℄ - sum(Phi[g℄*Sigma_s[j℄[g℄,j=1..g-1)= K(Chi[g℄*(sum(nu_Sigma_f[j℄*Phi[j℄,j=1..G))), Phi[g℄℄,g=1..G)The interpretation of this version follows term for term the interpretation of theoriginal, although it only represents down-s
atter. The LAPL() operator is MOOSEspe
i�
, and provides a linear approximation to the ▽ · Dg▽ operator in the orig-inal equation. The seq() and sum() operators represent a sequen
e of equationsand summations respe
tively. The K() operator indi
ates to the MOOSE that twomatri
es need to be derived from this problem so a general eigenvalue problem ofthe form Ax = kBx 
an be solved. The symbols D, Chi, Sigma_r, Sigma_s andnu_Sigma_f represent their Greek 
ounterparts. The symbol phi[g℄ is spe
i�ed onits own so that the MOOSE understands whi
h terms in the PDE are variables whi
hneed to be solved.Although MAPLE does provide 
ode generating fun
tions these only play a smallrole in translating the above PDE into a matrix generation program. They are usedin the late stages of 
ode generation for the elimination of 
ommon expressions, whi
h109
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onstants. MAPLE as a programming language o�ersa broad variety of expression sear
h and substitution fun
tions (whi
h are relied onheavily by the MAPLE 
ode generation program). MAPLE is also very good atrearranging the simple polynomials whi
h tend to result in various terms whi
h will
an
el ea
h other out. For example, the di�eren
e Sigma_s[g℄[g℄ - Sigma_s[g℄[g℄,
an be easily removed by the matrix generator before any 
ode is a
tually output.To build a matrix from the PDE, the matrix generator program must identifywhi
h variable is to represent the matrix diagonal. For the A matrix this must be non-zero, although for the B matrix the same requirement does not hold. The MOOSEgenerates an approximation to any �nite di�eren
e operators, and estimates newvalues for 
onstants as they are modi�ed by those operators. For ea
h variable in thePDE the 
onstant and variable terms are �rst separated, and then those algebrai
terms are translated into their 
orresponding C 
ode.So for example, using equation 3.6, the MOOSE �rst symboli
ally isolates thediagonal multiplier for one spatial dimension given that φ2 is to represent the diagonalelement. An approximation of▽·D2▽φ2 in �nite di�eren
ed form is generated. Thisterm represents the �ow into and out of a unit 
ell in the rea
tor 
ore. A typi
al �nitedi�eren
ed approximation is derived from the �rst order Taylor series approximationto the �rst derivative whi
h is applied twi
e. In one dimension the di�eren
e of theforward derivative and the reverse derivative is
dφ

dx
|xi+

∆

2

∼= φi+1 − φi

∆
(3.7)

dφ

dx
|xi−

∆

2

∼= φi−1 − φi

∆
(3.8)where xi represents the position in spa
e, ∆represents the distan
e between points.110
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entered average is used for D
D(xi +

∆

2
) =

1

2
(Di+1 +Di) (3.9)

D(xi +
∆

2
) =

1

2
(Di−1 +Di) (3.10)Combining these and taking the se
ond di�eren
e

▽ ·D2 ▽ φ2 =
1

2∆
(Di+1 +Di)

(
φi+1 − φi

∆

)
− 1

2∆
(Di−1 +Di)

(
φi−1 − φi

∆

) (3.11)When the multiplier for φi is solved for
1

2∆2
Di−1 −

1

2∆2
Di+1 (3.12)In
luding the remaining terms the �nal pre�x derived is

− 1

2∆2
Di−1 +

1

2∆2
Di+1 + ΣR (3.13)The 
ode generator is able to identify 1

2∆2as a repeated sub expression, so prior to
ode output the pre
eding approximation is rewritten as a pair of expressions
t1 =

1

2∆2

V ALUE = −t1 ·Di−1 + t1 ·Di+1 + ΣR (3.14)As a last step this polynomial must be expanded into 
ode whi
h 
an be 
ompiled111
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 using referen
es to data stru
tures used by the MOOSE. The �nal 
ode frag-ment for setting the diagonal matrix value of equation 3.6 for the two group modelwill look like this:ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);t[1℄ = 1. / 2*(dx * dx);VALUE = t[1℄ * (grid[x℄[y℄->
->D[2℄ + grid[x+1℄[y℄->
->D[2℄) +t[1℄*(grid[x℄[y℄->
->D[2℄ + grid[x-1℄[y℄->
->D[2℄)grid[x℄[y℄->
->Sigma_R[1℄;matrixdr_ADD(ROW_POS, VALUE);The variable X_st stores the starting position in the ve
tor for this map. Sin
e multiplelinked maps are possible, X_st is only zero for the �rst one. P_SIZE stores the propertystru
ture size. In the pre
eding example sin
e G=2, and no other properties werede�ned for the 
ell P_SIZE was also two. There is no limit on P_SIZE. Typi
al valuesrange anywhere from one to twenty depending on how the problem is spe
i�ed. Thearray grid[x℄[y℄ stores geometry information about the problem. This data stru
tureis automati
ally generated by the MOOSE from geometry input �les supplied by theuser. The C 
ode generated by the MOOSE attempts to retain as many of the symbolsas possible from the original PDE, so that 
onstant names like Sigma_r or D whi
happear in the PDE will also appear in the generated 
ode. This kind of bookkeepingwas invaluable in debugging the MOOSE.Noti
e that the above 
ode fragment only sets the diagonal value. Additional
ode fragments are required to 
omplete the row. Three more polynomials need to be
omputed as row matrix entries for this example. In addition to these requirements,another row must be built for equation 3.5, whi
h requires three more polynomials.Matrix rows must be built for border sharing either using interpolation or 
onserva-112
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ision pro
ess involved in 
onstru
ting a 
onservation based border isdis
ussed in se
tion 3.5.4. A partial listing for the 
ode generated by the MOOSE fora two dimensional two group transient problem is given in Appendix 3.The sparse matrix generator built by the MOOSE is built from 
olle
tions of simplepolynomials as in the pre
eding example. While the diagonal 
oe�
ient for the twogroup one dimensional 
ase generates a fairly simple polynomial, this is not alwaysthe 
ase. Some polynomials have literally dozens of terms in them, even after theidenti�
ation and elimination of 5 or 10 repeated sub-expressions. This is espe
iallytrue in the transient 
al
ulation for 
onstant entries in the b ve
tor.Code generated by the MOOSE 
an be quite verbose. It is not unusual for theoutput from the MOOSE sparse matrix generator to be in ex
ess of 20,000 lines. As arough measure of 
omplexity, a human programmer normally 
odes 1,000 lines in onemonth. The MOOSE therefore is doing the work of a engineer programmer translatingan equation into a 
omputer program at a remarkably fast rate.It may be argued that sin
e the 
ode generated by the MOOSE is generated auto-mati
ally that this 
ode la
ks 
ertain optimizations that a good human programmerwould use. While this may be the 
ase, it is also the 
ase that the automati
allygenerated 
ode demonstrates performan
e that is quite a

eptable. During develop-ment, the MOOSE libraries and the automati
ally generated 
ode were analyzed fore�
ien
y using several pro�ling tools, su
h as gprof and others. These tests showedexe
ution time was always dominated by the numeri
al solution libraries. For thefastest linear solver, initial sparse matrix setup and MOOSE map 
lass 
onstru
tion
onsumed no more than 20% of the total exe
ution time. For many of the eigenvalueproblems matrix setup time takes less than 1% of the total exe
ution time.The time saved by using an automati
 equation translator for the wide variety ofpossible PDEs of interest far outweighs any e�
ien
y that might be gained by hand113
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Figure 3.8: Conservation of Flow
oding the setup pro
edure for individual problems. The initial e�ort in buildingthe MOOSE libraries and equation translators is not regained immediately, but afterseveral hundred problem instan
es are 
onstru
ted. This is the argument for buildinga 
arefully designed generi
 tool intended to be reused, opposed to tools whi
h areonly appropriate for a single use.3.5.2 The Problem of ConservationConservation, in the 
ontext of this thesis, refers to whether a simple property of
onservation of mass at a 
ell or grid boundary holds or not. Normally when materialpasses into a boundary the same material must pass out of the boundary. Conser-vation, as a mathemati
al property of numeri
al balan
e, always holds for a �nitedi�eren
e formulation on a regular Cartesian grid. Consider the illustration in Figure3.8. The equation, or set of equations whi
h represents the value of the fun
tion for
ell 1 will estimate a �ow of material out of 
ell 1 and into 
ell 2. The expressionwhi
h 
ell 2 uses to estimate the �ow into it from 
ell 1 must exa
tly balan
e it. Ifthis 
ondition does not hold, then parti
les are being either 
reated or destroyed andthe problem 
eases to be meaningful. 114
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ussed example of the neutron di�usion equation inse
tion 3.5.1, on a Cartesian mesh the �ux a
ross the boundary AB will be 
omputedusing two expressions
dφ

dx
|outAB1

∼= φ1 − φ2

∆
(3.15)

dφ

dx
|inAB2

∼= −φ2 − φ1

∆
(3.16)These expressions are a natural result of the symmetry of the problem, with alittle attention to the dire
tion of the signs, they work out to be equivalent. Whenworking with more 
omplex interfa
es along AB the symmetry of the arrangement ofthe problem is often disrupted, and in these situations 
onservation 
an no longer beassumed to hold and spe
ial te
hniques must be used to minimize errors. There are3 basi
 s
enarios that are 
onsidered in the following se
tions where it is not obvioushow to maintain 
onservation. Solution methods whi
h redu
e errors are proposedwhi
h are demonstrated through numeri
al experiments in the next 
hapters. Thethree situations are1. equally sized grid elements whi
h are misaligned, solved with non-linear inter-polation te
hniques2. unequally sized grid elements, solved by a geometri
 
onservation rule3. material dis
ontinuities along boundaries, solve by a material dis
ontinuity rule
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ussed in Chapter 2, in the se
tion on 
omposite grid methods, many authorsargue that non-linear interpolation methods are su�
ient to link meshes, in parti
-ular see [39, 154℄. Several papers present mathemati
al proofs on the subje
t whi
hquantify the degree of error introdu
ed by linking meshes with various orders of in-terpolation methods for 
ertain 
ases related to �uid dynami
s.Given the su

ess des
ribed by these authors it made sense to work with non-linearinterpolation methods as a mesh linking prin
iple. During the 
ourse of developingthe MOOSE and experimenting with various moving meshes it was learned that thisprin
iple holds under 
ertain spe
i�
 
ir
umstan
es. If a pair of meshes is linked, butmisaligned, and the mesh sizes on either side of a boundary are equal, and there areno spe
ial material dis
ontinuities, then it was found that the meshes 
ould e�e
tively
ommuni
ate using a non-linear interpolation method for either side of the interfa
e.For example, in Figure 3.9 where two equally sized meshes meet at a boundary lineAB, despite the fa
t that they are misaligned, the material leaving 
ell 1 
an be
orre
tly estimated and balan
ed with the weighted partial sums of material entering
ell 2 and 
ell 3. The justi�
ation is that this situation preserves symmetry. Using oneof the 
onservation rules introdu
ed in the next se
tion would destroy this symmetry.In the 
ase of the neutron di�usion equation neutron 
urrent is 
omputed byestimating the gradient of the neutron �ux on either side of the boundary AB. Theneutron �ux at the 
enter of 
ell 1 is known, the gradient is 
omputed by estimatinga value for the �ux whi
h lies somewhere between the 
enters of 
ell 2 and 
ell 3and using this to 
ompute the gradient. As will be illustrated in tests at the endof 
hapter 4 and throughout 
hapter 5 this te
hnique alone works reasonably well solong as there are no material dis
ontinuities, and so long as the 
ells on either side of116
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Figure 3.9: Conservation at Non-Aligned Boundarythe boundary are of the same dimensions.Several nonlinear interpolation methods were experimented with during the 
ourseof the development of the MOOSE mesh linkage in
luding Lagrange and Newtoninterpolation, although spline based interpolation methods were found to yield thebest results. A spline is a pie
ewise polynomial of degree k that is 
ontinuouslydi�erentiable k-1 times. A 
ubi
 spline is a pie
ewise 
ubi
 polynomial that is twi
e
ontinuously di�erentiable.Despite the suggestion of nonlinearity in the name of the interpolation, usingnonlinear interpolation methods is 
onsistent with an overall linear solution methodsin
e the non-linear terms are resolved before the system is solved. Sin
e the MOOSEassumes that ea
h submap uses a uniform mesh spa
ing 
ertain simpli�
ations inmulti-point interpolation methods 
an be realized.The situation illustrated in Figure 3.9 is the simplest 
ase where the interpolations
heme 
an ex
lusively use points along the verti
al axis. If the linked meshes do notuse the same 
ell sizes the interpolation routines may be required to use more points.Interpolation routines are used both to 
onne
t meshes spatially but also to 
onne
tmesh points from di�ering time frames. Due to the motion of 
omponents, and the117
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al and Computer Engineeringallowable arbitrary alignment of meshes a variety of interpolation situations must behandled. For example, requests for interpolated data made near the 
orners of meshes,or exa
tly in line with a row or 
olumn of data points will limit the number of pointsused by the algorithm. Conversely, interpolation requests made in the middle of a gridmay use as many as 16 data samples to estimate the value at an arbitrary lo
ation.The MOOSE interpolation routines support the following s
enarios
• One dimensional interpolation is required (a point along a line along the X onlyor Y only axes)
• Two dimensional interpolation is required (a point bounded by four or morepoints)
• Three points are available in either the X or Y dire
tions
• Four points are available in either the X or Y dire
tionsIn the illustrated 
ase in Figure 3.9 only 3 points are available, this 
ase o

urs neargrid 
orners. Further away from 
orners it was found that a pie
ewise polynomialwhi
h used 4 points to de�ne the shape of ea
h se
tion was bene�
ial. Figure 3.10 a)illustrates how the 4 point spline works. To estimate a value between points 2 and3 a line is 
onstru
ted whi
h passes through those points. The slope of the line atpoints 2 and 3 is estimated using a �nite di�eren
e. In �gure b) this pro
edure isgeneralized for two dimensions near a 
orner of a grid. A value for the 
ir
led point(I) is to be estimated from the neighboring 
ells numbered 1-12. 4 points 
an be usedto estimate the shape of the surfa
e in the X dire
tion, but only 3 points are availableto estimate it in the Y dire
tion due to proximity with the edge.In the simplest 
ase where 3 points are available along a line a parabola is 
on-stru
ted. For example given the line 118
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b) 2D surface, 12 points used to interpolateFigure 3.10: Interpolation S
hemes
y = ax2 + bx+ c (3.17)and the 3 points where x1 − x0 = x2 − x1

(x0, y0), (x1, y1), (x2, y2)Using simple �nite di�eren
e approximations for the �rst and se
ond derivativebased on the given points, and equating them to the exa
t �rst and se
ond derivativesfor the line it is possible to solve for a, b, and c in terms of y0, y1, and y2.
a =

y2

2
− y1 +

y0

2
(3.18)

b = −y2

2
+ 2y1 −

3y0

2
(3.19)

c = y0 (3.20)During the exe
ution of the model some additional steps 
an be avoided by rear-119
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i�
 x lo
ation a weighted sum of y0, y1, and y2is used. Given
w0 = 1 − 3x

2
+ x2 (3.21)

w1 = 2x− x2 (3.22)
w3 = −x

2
+
x2

2
(3.23)a new approximation 
an be written as:

y = w0y0 + w1y1 + w2y2 (3.24)Although an x2 term appears in these formulas the value of x2 is determined priorto the solution of the matrix. The MOOSE always assumes that the position of all
omponents are known in a given time frame so the weight ve
tor 
an be 
omputedat run time just prior to the solution of the matrix.3.5.4 Boundary Sharing Conservation RulesThe MOOSE grid system 
onne
ts meshes by using a ring of phantom 
ells aroundea
h mesh. Phantom 
ells reprodu
e values from other meshes and provide a 
onve-nient methodology for linking meshes. The example in Figure 3.11 shows an explodedview of two meshes of di�erent resolutions. The phantom 
ells are marked with theletter 'P'. When the two meshes are brought together the points marked A and B are
oin
ident and the phantom 
ells of ea
h mesh are tu
ked under the a
tual 
ells of theother mesh. This se
tion explains how the MOOSE algorithms 
ompute the phantom120
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Figure 3.11: Phantom Cells, Exploded Viewvalues.There are two basi
 methods for 
omputing the phantom values. The �rst method,already dis
ussed in the previous se
tion on interpolation, is to 
ompute phantomvalues using a nonlinear interpolation method. This method works well when the twomeshes use 
ells of the same size (or at least very 
lose to the same 
ell size). However,as test results in the next se
tion will show, when the interfa
e is more 
ompli
atednonlinear interpolation is not su�
ient to estimate phantom values for the 
al
ulationof �ow.Consider the interfa
e illustrated in Figure 3.12. The equations for linking thesetwo regions are no longer as simple as those des
ribed at the beginning of the se
tion.If region 1 
omputes values for its phantom 
ells using interpolation, and then 
ell 1uses these phantom 
ells to estimate the �ow of parti
les a
ross the interfa
e then 
ell1 uses an interpolation rule to 
ompute �ow . If instead region 2 estimates valuesfor phantom 
ells using an interpolation method and then 
ell 1 estimates its �ow by121
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Figure 3.12: Elements of Flowpeeking at the �ows estimated by region 2, and approximates the �ow out of 
ell 1 bya weighted average of the �ows into 
ells 2 and 3, then 
ell 1 uses a 
onservationrule to 
ompute �ow . Using a 
onservation rule to 
ompute �ow is less dire
t,and more 
omplex. Essentially what 
onservation rules do is allow the other mesh toestimate �ows using interpolation, and then they assemble, in a pie
ewise fashion, anestimate for the �rst mesh whi
h will exa
tly mat
h.3.5.5 Geometri
 Conservation RulesThe following analysis will follow a 
ell-
entered, or �nite volume approa
h that treatssimulation variables as though they are de�ned within re
tangular regions. The sam-ple problem under 
onsideration will be assumed to be the neutron di�usion problem,although the same arguments will hold for a variety of other di�usion style problems.Figure 3.13b shows a detailed view of the interfa
e between region 1 and region 2whi
h is marked out as the line AB. A single �ux point for region 1 is marked as Φ1,and the �ux for region 2 for the �rst 3 
ells along the boundary are marked as ϕ1, ϕ2,

ϕ3. To 
ompute neutron 
urrents, or e�e
tively represent the D▽φ term of equation3.4, a boundary 
ondition for region 1 whi
h allows it to 
ommuni
ate with region 2 is122
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Figure 3.13: Interfa
e 3:1needed. Within region 2 a 
ell of equal dimensions to the 
ell in region 1 is shown asa dashed line. The neutron �ux for this phantom 
ell is identi�ed as Φ∗
1. The se
ondset of phantom values ϕ∗

1, ϕ
∗
2, ϕ

∗
3 represent the neutron �ux in region 1, but in gridelements of dimension similar to region 2, these are the reverse analogue of Φ∗

1.A �rst order di�eren
e Φ1−Φ∗

1

△x
will be used to approximate the neutron 
urrent ∂Φ

∂x
.In a 
ase like the one expressed in Figure 3.13, where the divisions on either side ofline AB are an integer multiple of one another. Conservation of �ux for this spe
i�

ase 
an be written as

D (Φ∗

1
− Φ1) △ yR1

△xR1

=
D (ϕ1 − ϕ∗

1
) △ yR2

△xR2

+
D (ϕ2 − ϕ∗

2
) △ yR2

△xR2

+
D (ϕ3 − ϕ∗

3
) △ yR2

△xR2

(3.25)where D is the di�usion 
onstant previously dis
ussed, △xR1 and △xR2 are the 
ellwidths in region 1 and region 2 respe
tively, △yR1 and △yR2 similarly represent the123



PhD thesis D. Gilbert M
Master - Ele
tri
al and Computer Engineering
ell heights in region 1 and region 2. Suppose that the phantom values ϕ∗
1, ϕ

∗
2, ϕ

∗
3are 
omputed using a non-linear interpolation method, it would then be possible to
ompute Φ∗

1 using equation 3.25, and then 
onservation 
ould be guaranteed. This isan example of 
omputing �ow for region 2 using an interpolation rule, and 
omputing�ow for region 1 using a 
onservation rule. Alternatively if Φ∗
1 is 
omputed using anon-linear interpolation rule then ϕ∗

1, ϕ
∗
2, ϕ

∗
3 
ould be 
omputed using the followingexpression

D (ϕ1 − ϕ∗

1) △ yR2

△xR2

=
D (ϕ2 − ϕ∗

2) △ yR2

△xR2

=
D (ϕ3 − ϕ∗

3) △ yR2

△xR2

=
1

3
· D (Φ∗

1 − Φ1) △ yR1

△xR1

(3.26)Equation 3.26 is the reverse s
enario whi
h 
omputes �ow for region 2 using a
onservation rule, and the �ow for region 1 using an interpolation rule. For thisparti
ular 
ase estimating ϕ∗
1, ϕ

∗
2, ϕ

∗
3 through interpolation and then 
omputing Φ∗

1using equation 3.25 tends to produ
e better results than that estimating Φ∗
1 throughinterpolation and solving for ϕ∗

1, ϕ
∗
2, ϕ

∗
3 with equation 3.26. The reason for this is thatequation 3.26 dis
ards information by assuming that the �ow into ea
h of the smaller
ells is an equal fra
tion of the �ow out of the larger 
ell. If the �rst formulationis used, equation 3.25, then the �ow into the more detailed region maintains extrade�nition, while still being 
orre
tly balan
ed with the �ow out of the larger 
ells.A 
olle
tion of tests (dis
ussed in Chapter 4) whi
h 
ompared 
losed form di�usionresults with results 
omputed on linked meshes showed that the side of an interfa
ewhi
h is more detailed should estimate �ow using an interpolation rule. The side ofan interfa
e whi
h is less detailed should attempt to balan
e the �ow using equation3.25. When mesh sizes on either side of an interfa
e are about the same, the moste�e
tive strategy was to use an interpolation rule for both.The a
tual implementation of the MOOSE framework is not limited to dealing with124
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ells. Built into the matrix generator are systems for expressingboth equation 3.25 and equation 3.26 for arbitrary 
ell sizes and the appropriate rulesfor de
iding when to 
onstru
t matrix entries representing these di�erent variations.In pra
ti
e 
ell sizes should be approximately similar, 
ell size ratios of more than3:1 tend to produ
e unsatisfa
tory simulation results. The de
ision about when toimplement either rule 
an be made prior to solving the simulation problem itself.Code whi
h de
ides on whi
h rules to apply works on a 
ell by 
ell basis, and s
ans theperimeter of ea
h mesh prior to 
onstru
ting a matrix whi
h represents the problem.The automati
ally generated 
ode whi
h 
onstru
ts these rules tends to be quite long,an example is presented in Appendix 3.3.5.6 Material Dis
ontinuity Conservation RulesConservation 
an be determined by relative 
ell size alone, if there are no material dis-
ontinuities along the borders. Most papers (see 
hapter 2, dis
ussion on 
onservativemeshes) that have investigated linking multiple meshes with either 
onservation rulesor interpolation rules have simply advo
ated keeping mesh dis
ontinuities far awayfrom mesh boundaries. For the nu
lear rod insertion problem this is not possible.In order to simulate the insertion of either a fuel assembly or 
ontrol rod, materialdis
ontinuities must be present along the mesh boundary. This presents an additional
ompli
ation, illustrated in Figure 3.14.Figure 3.14 illustrates a situation where the top two thirds of region 1 representssome physi
al dis
ontinuity of the simulation (in this 
ase the leading tip of a fuelassembly), while the bottom third of region 1 represents another material, in this 
asethe moderator for the fuel. Region 2 is entirely 
omposed of the moderator.In order to 
ompute the neutron 
urrent going a
ross the boundary an average125
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Figure 3.14: Material Dis
ontinuities
onstant whi
h represents the material 
ross se
tion in both regions is needed. Re-ferring ba
k to the se
tion whi
h dis
ussed the individual elements of the Lapla
ianoperator, the �rst term of equation 3.11 represents the �ow a
ross one edge of a 
ell,in this example the �ow out of the 
ell labeled ϕ2 and a
ross the AB boundary is
onsidered. This 
an be rewritten in terms of phantom 
ells as
(
ϕ2 − ϕ∗

2

△xR2

)
∆yR2 ·

(
D +D∗

2 △ xR2

) (3.27)The errors in
urred by using mismat
hed mesh sizes are not nearly as large as theerrors whi
h result from the heuristi
 estimate of 
onstants. In the above 
ase D∗ asestimated for the region inhabited by ϕ∗
2 must be represented in an ad-ho
 way as amixture. The mixture is not 
orre
tly represented by a simple average of values.The previous se
tion whi
h dis
ussed the geometri
 
onservation rules indi
ated126



PhD thesis D. Gilbert M
Master - Ele
tri
al and Computer Engineeringthat region 1 should 
ompute �ow using a 
onservation based rule rather than aninterpolation based rule due to the di�eren
es in 
ell sizes. Before de
iding to 
ompute�ow for region 1 with a 
onservation rule a 
he
k is done to test that region 1 hasno material dis
ontinuities in the area of Φ1. This 
he
k ensures that the 
ells to thenorth and to the south of Φ1 are the same as Φ1. In the above example this testfails and it indi
ates that ϕ∗
2 should be 
omputed using a 
onservation rule be
auseof material dis
ontinuities in region 1. For the following equation, the D term issubs
ripted with the variable that it is asso
iated with

Dϕ2
(ϕ2 − ϕ∗

2) △ yR2

△xR2

=
1

4
· DΦ1

(Φ∗

1 − Φ1) △ yR1

△xR1

+
1

4
· DΦ2

(Φ∗

2 − Φ2) △ yR1

△xR1

(3.28)Equation 3.28 
an be used to 
ompute ϕ∗
2 using a 
onservation rule. Stri
tlyspeaking the 
orrupt term Dϕ2

is still used to 
ompute the �ow a
ross the boundaryAB. However, sin
e this term is only relevant in relation to ϕ∗
2 and sin
e ϕ∗

2 has been
omputed in a way whi
h for
es �ow to be 
onserved, the ina

ura
ies of Dϕ2
are
orre
ted.The material 
onservation rule works be
ause it avoid using a heuristi
 approxi-mation in the linking of meshes. This rule is normally applied along all edges prior tosolving a system of equations. It is often the 
ase that only a few instan
es of this rule
ome into play, for example near the leading or trailing edges of a moving 
omponent.The statement that this rule is more important than the geometri
 
onservation ruleis somewhat problem dependent. Experien
e gained during the 
ase study presentedin Chapter 5 suggested that the material 
onservation rule had a large impa
t onsolution a

ura
ies.
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ourse of developing the mesh linking strategy several basi
 prin
iples wereidenti�ed. They were presented in this 
hapter in order of priority, lowest priority �rst.To summarize, the basi
 mesh linking rules are1. Use an interpolation rule to 
ompute �ow on both sides of an interfa
e only ifthe 
ell dimensions on either side are roughly the same, and only if rule 2 and3 are not violated.2. Use an interpolation rule to 
ompute �ow on the side of an interfa
e whi
h hassmaller 
ells. Use a 
onservation rule to 
ompute �ow on the side of an interfa
ewhi
h as larger 
ells, only if the last rule is not violated.3. Use an 
onservation rule to avoid 
omputing �ows with heuristi
ally 
omputed
onstants.The justi�
ation for ea
h of these rules has to do with avoiding estimates of quan-tities, either by assuming 
ertain quantities are equivalent whi
h may not be, or by
omputing values in an ad-ho
 fashion. The �rst rule only applies in the spe
i�
 
asewhere 
ell sizes are equal but simply misaligned and no material dis
ontinuities arepresent, this rule holds as a matter of symmetry sin
e there is no 
lear reason to applya 
onservation rule to either domain.In the 
ase of a 
on�i
t, where it appears that there are too many material dis
onti-nuities on either side of a mesh interfa
e interpolation is 
hosen as the default for bothsides. Finally, if 
onservation rules are used on opposite sides of an interfa
e whi
hexa
tly oppose ea
h other, a singular matrix and an unsolvable problem will result. Itamounts to spe
ifying a set of equations similar to ϕ1 −ϕ2 −ϕ3 = 0, ϕ2 −ϕ1 −ϕ3 = 0whi
h gives no information about ϕ1, ϕ2,ϕ3 unless further equations are spe
i�ed.128
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ing 
ells on one side or the other of theinterfa
e to use interpolation should a 
on�i
t arise. Normally the 
he
k for materialpurity in the 
urrent region will redu
e the likelihood of this 
on�i
t, but it 
an stillo

ur.This 
hapter has summarized some of the essential details behind the MOOSEframework. As already noted the 
ode for the framework is quite extensive, thepresentation in this se
tion should give an indi
ation of the level of 
omplexity ofthe MOOSE algorithms, and the details behind some of the 
omponents. In ane�ort to keep this 
hapter short many details regarding the implementation have beennegle
ted, and the presentation of the prin
iples behind the MOOSE have fo
used onsimpli�ed examples rather than on the fully general s
enarios implemented within theframework.Despite this, the mesh linking prin
iples themselves are not that 
ompli
ated andshould be easy to appre
iate from a �rst prin
iples stand point. A simulation ex-pert interested in implementing a linked mesh need not employ all the details of theMOOSE framework. The mesh linking rules 
an be implemented on their own for aspe
i�
 mesh layout, and the same results should be a
hievable, either for the 
ase ofmoving meshes, or for the 
ase of a stationary mesh with varied resolution.Similarly a simulation expert interested in applying prin
iples of 
omputer algebraand 
ode generation should �nd some of the details presented in this 
hapter insightful.For the MOOSE 
ode generation provided a bridging point between a pre-existing
omputer algebra language, and high performan
e numeri
al solvers. Some authorswho write about 
ode generation des
ribe it as a pana
ea. This kind of hype istypi
al of trends in 
omputing, and while 
ode generation has its pla
e in programdevelopment, it should be undertaken only with good justi�
ation.129



PhD thesis D. Gilbert M
Master - Ele
tri
al and Computer Engineering
Chapter 4
Veri�
ation
This 
hapter will present a 
olle
tion of problems and their solutions to verify theresults generated by the MOOSE. Along side problem veri�
ation some 
on
rete ex-amples of the pro
edures involved in setting up a problem for the MOOSE will begiven. Problems were 
hosen from a variety of areas in
luding ele
trostati
s, heat
ondu
tion, wave propagation, as well as the target area of rea
tor physi
s. All ofthe problems involve typi
al �eld and potential 
al
ulations that utilize the most im-portant features of the MOOSE. The example problems are 
hosen to represent ea
hof the fundamental problem types, either paraboli
, ellipti
 or hyperboli
 in nature.One and two dimensional problems are 
onsidered in both steady state and transientvariations. Finite di�eren
es are used to approximate �rst and se
ond derivatives.Problem 
hoi
e was made in favour of those examples that have 
losed form solu-tions. Good sour
es of problems in
lude [34, 105, 108, 128, 166℄.It should be noted that mu
h resear
h e�ort has been invested in the subje
t ofsoftware veri�
ation and validation and while this proje
t a
knowledges the impor-tan
e of these two subje
t areas this thesis does not address either but fo
uses ratheron model veri�
ation and validation. The use of library routines independently imple-130
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hers 
an greatly redu
e veri�
ation and validatione�orts. Software veri�
ation and validation properly falls within the domain of soft-ware engineering and deals with issues like proving the 
orre
tness of an algorithmand demonstrating that the algorithm generates expe
ted results.The method of manufa
tured solutions (MMS) [136℄ is a te
hnique whi
h hasbeen used in re
ent years to verify problems for whi
h 
losed form solutions are notavailable. The goal of MMS is to manufa
ture an exa
t solution to a slightly mod-i�ed variation of the target problem for the purpose of verifying a simulation. Themodi�ed equations need not represent an a
tual physi
al s
enario, but are ratherbased on the same equations as the physi
al model with additional sour
e terms andspe
ial boundary 
onditions that permit 
omparison with the apriori determined so-lution. Manufa
tured solutions should be 
hosen to be smooth analyti
al fun
tionswith smooth derivatives. Care must be taken to ensure that no single term in thegoverning equation dominates any other term. Realizable solutions should be alsobe used. For example, if the problem in
ludes water �ow, the manufa
tured solutionshould not in
lude temperatures for frozen or boiling water. Sin
e MMS requires theability to in
lude arbitrary sour
e terms, initial 
onditions and boundary 
onditions,it must be possible to in
lude the spe
i�
 form of the manufa
tured solution in the
ode. MMS is thus a 
ode intrusive methodology and 
annot be used for bla
k boxanalysis. MMS is predi
ated on having smooth solutions, the analysis of non-smoothsolutions (sho
k-waves, material interfa
es, et
.) is an open resear
h issue.While MMS was seriously 
onsidered as a veri�
ation te
hnique for this 
hapter,as a methodology it is still very young, and hen
e there are few introdu
tory examplesin the literature to illustrate its use. Instead, this 
hapter fo
uses on the use of exa
tsolutions for veri�
ation whi
h has a long history and 
onvin
ingly demonstrates adegree of 
on�den
e for the MOOSE framework. Simulation errors may be di�
ult131
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t simply be
ause there may be no other existing models and no physi
al datato 
ompare with. The 
on�den
e developed in this 
hapter through simple exampleswill provide the foundation on whi
h the results for the next 
hapter will be laid.Surveys of veri�
ation te
hniques are presented by [136, 139℄.4.1 Veri�
ation versus ValidationVeri�
ation and validation pro
edures provide a set of tools and methodologies forbuilding 
on�den
e in 
omputational simulations. In 
ommon usage the words ver-i�
ation and validation are synonymous; however, in 
urrent engineering usage theyhave very di�erent meanings. There are no standardized meanings for veri�
ationand validation, this se
tion presents de�nitions of these terms based on [97, 136, 139℄.Veri�
ation asks questions related to the mathemati
s, 
omputer s
ien
e and soft-ware engineering as they apply to a simulation's implementation. Veri�
ation of amodel 
an be addressed entirely though apriori te
hniques and makes no 
onne
tionbetween the model and any observable phenomena. A model whi
h is veri�ed is amodel whi
h has been shown to be internally 
onsistent, or whi
h follows the rulesof logi
 and mathemati
s in a rigorous, a

epted and reprodu
ible way. For some
lasses of models a variety of well understood properties have been proven to be in-variant, for example the rate of 
hange of error 
ompared with redu
tions in meshsize. Demonstrating that a new model 
an reprodu
e these same invariant propertiesprovides eviden
e that weighs in favour of that model being veri�able.In 
ontrast, validation deals with the physi
s and engineering prin
iples of themodel and addresses the ability of the model to reprodu
e experimental data. Physi
almodels are themselves open to interpretation and subje
t to a variety of simplifyingassumptions, whi
h may or may not be appropriate. Validation has two main aspe
ts:132
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on
eptual validation, the faithfulness to whi
h the implementation on a 
omputermirrors an a

epted physi
al model, and results validation, the 
omparison of thesimulation's output with an appropriate referent to demonstrate that the model orsimulation 
an in fa
t support the intended use.A model that is veri�able but 
annot be validated is not very useful. This s
enario
an happen when the implementation is 
orre
t and 
onsistent, but a fundamentalphysi
al assumption is in
orre
t. For example, assuming that some 
omponent in amodel is weightless may result in a veri�able model, but might not generate 
onvin
ingreal world results. Similarly it might be possible to demonstrate that a parti
ularmodel 
an be validated for 
ertain 
ases even though the model fails veri�
ation tests.This 
an indi
ate errors in the solver or mesh implementation.If a model is veri�ed, and validated for several 
ases then a 
ertain degree of
on�den
e is established that in the future it will 
orre
tly predi
t results. Meetingboth 
onditions still only in
reases the 
on�den
e that the model is 
orre
t, it neverestablishes 100% 
orre
tness. The remainder of this 
hapter will fo
us on issues
entral to veri�
ation, the next 
hapter implements a fairly detailed 
ase study of theM
Master Nu
lear Rea
tor and provides some eviden
e of model validation.4.1.1 Issues Related to Veri�
ationIn any simulation there are several typi
al sour
es of errors
• Physi
al Modeling Errors
• Dis
retization Errors
• Numeri
al Errors
• Programming Errors 133
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al modeling errors are those indu
ed by the 
hoi
e of equations to model thesystem. Most physi
al models make a variety of assumptions and simpli�
ations,whi
h fo
us the model on a phenomenon of interest, while ignoring terms whi
h are notof interest. Typi
al modeling simpli�
ations might in
lude fri
tionless media, the useof lumped masses or 
ontinuous quantities to model large numbers of small parti
les,modeling a phenomenon like the adve
tion of �uid while ignoring the vorti
ity ofthat �uid, studying one and two dimensional representations of three dimensionalphenomena, the use of symmetri
al models, and so on. Su
h simpli�
ations makeproblems tra
table. So long as the impli
ations of simpli�
ations are understood they
an be of great assistan
e.Dis
retization errors are those that are introdu
ed when a physi
al model is 
on-verted into a 
omputerized model. Some physi
al problems 
an be solved through
lassi
al 
al
ulus. Programs like MAPLE or Mathemati
a are able to integrate 
on-tinuous fun
tions algebrai
ally. Despite the many re
ent advan
es in symboli
 solutionof physi
al problems, most simulation work is still done with numeri
al approxima-tions to derivatives. Numeri
al approximations to derivatives are normally derivedfrom an in�nite Taylor series, for whi
h only the most signi�
ant, or lowest orderterms are retained. The terms whi
h are negle
ted be
ome part of the error. Anexample of how su
h a system is derived is given in the next se
tion.Errors 
an also be the result of round o�, or the dis
ritization of 
ontinuous quan-tities whi
h a 
omputer must undertake to represent �oating point numbers in binaryregisters. When an algorithm must repeatedly multiply and add several million indi-vidual registers together the ma
hine's inability to keep tra
k of the least signi�
antbit in a �oating point number's representation will a

umulate. Algorithms whi
h arewell designed 
an address these issues to a 
ertain degree.134
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t and it is fair to suggest thatany software system will have some. Systemati
 errors are perhaps the simplest toidentify and 
orre
t, for example the software generates negative results instead ofpositive ones, or 
onsistently generates predi
tions that are 10% too low. Program-ming errors that 
ause a simulation to fail under 
ertain 
ir
umstan
es are not nearlyso serious as programming errors that 
ause a software system to report in
orre
tresults or worse even, 
orre
t results some of the time, and in
orre
t results at othertimes.For many problems the time available to 
ompute the solution will provide theultimate limit. The modeler must often 
hoose between a

eptable error introdu
edby dis
retization, and the amount of time they are willing to wait for this solution.A fast model that yields a result with an un
ertainty outside a pra
ti
al range is justas useless as a pre
ise model that will yield an exa
t result too late to be of any use.4.1.2 Consisten
y and Convergen
eFor a numeri
al s
heme to be 
onsistent, the dis
retized equations must approa
h theoriginal partial di�erential equations in the limit as the element size approa
hes zero.For a stable numeri
al s
heme errors due to round-o�, iterative trun
ation or othersimilar sour
es must not grow in the mar
hing dire
tion. This dis
ussion of stability,
onsisten
y, and 
onvergen
e is taken from [70, 139℄.Convergen
e addresses the issue of whether the solution to the dis
retized equa-tions approa
hes the 
ontinuum solution of the partial di�erential equation in thelimit of de
reasing element size. Convergen
e is addressed by Lax's equivalen
e theo-rem, whi
h states that given a properly-posed initial value problem and a 
onsistentnumeri
al s
heme, stability is the ne
essary and su�
ient 
ondition for 
onvergen
e.135
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y then is a property of the dis
retization of the equations while 
onvergen
edeals with the solution method of those equations.For veri�
ation purposes it is 
onvenient to de�ne the dis
retization error as thedi�eren
e between the solution to the dis
retized equations and the solution to theoriginal partial di�erential equations.One approa
h to evaluate the trun
ation error for the example of a �nite di�eren
es
heme is to start with a Taylor series expansion of the solution variables. For example(see [139℄), 
onsider the fun
tion T (x) expanded about the point x0, the Taylor seriesexpansion 
an be written as
T (x) =

∞∑

k=0

∂kT

∂xk

∣∣∣∣
x0

(x− x0)
k

k!
(4.1)Consider the one-dimensional transient heat equation given by

∂T

∂t
− α

∂2T

∂x2
= 0 (4.2)where α represents the 
onstant of thermal 
ondu
tivity. This equation 
an be dis-
retized with �nite di�eren
es using a forward di�eren
e in time and a 
entered se
onddi�eren
e in spa
e, resulting in the simple expli
it numeri
al s
heme

T n+1
i − T n

i

△t − α
T n

i+1 − 2T n
i + T n

i−1

(△x)2 = 0 (4.3)where the subs
ripts denote spatial lo
ation and the supers
ript denote the temporalstep. To determine the trun
ation error for this numeri
al s
heme, ea
h of the abovetemperature values 
an be expanded in terms of the temperature at lo
ation i andtime step n.
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T n+1

i = T n
i +

∂T

∂t

∣∣∣∣
n

i

△t
1!

+
∂2T

∂t2

∣∣∣∣
n

i

(△t)2
2!

+
∂3T

∂t3

∣∣∣∣
n

i

(△t)3
3!

+O
(
△t4

)

T n
i+1 = T n

i +
∂T

∂x

∣∣∣∣
n

i

△x
1!

+
∂2T

∂x2

∣∣∣∣
n

i

(△x)2

2!
+
∂3T

∂x3

∣∣∣∣
n

i

(△x)3

3!
+O

(
△x4

)

T n
i−1 = T n

i +
∂T

∂x

∣∣∣∣
n

i

(−△ x)

1!
+
∂2T

∂x2

∣∣∣∣
n

i

(−△ x)2

2!
+
∂3T

∂x3

∣∣∣∣
n

i

(−△ x)3

3!
+O

(
△x4

) (4.4)Substituting these expressions into the dis
retized equation and rearranging yields
∂T

∂t
− α

∂2T

∂x2
=

[
−1

2

∂T

∂t

]
△ t+

[
α

12

∂4T

∂x4

]
(△x)2 +O

(
△t2

)
+O

(
△x4

) (4.5)The di�eren
e between the original partial di�erential equation and the dis
retizedequation is the trun
ation error. This simple expli
it s
heme for the transient heatequation is 
onsistent sin
e the trun
ation error goes to zero as △x and △t go to zero.The formal order of a

ura
y of the s
heme is �rst order in time and se
ond order inspa
e sin
e the leading terms 
ontain the fa
tors △t and (△x)2.4.1.3 Measuring A

ura
yThe observed order of a

ura
y is the a

ura
y 
omputed from 
ode output for agiven simulation or set of simulations. The observed order of a

ura
y 
an be adverselya�e
ted by mistakes in the 
omputer 
ode, solutions whi
h are not su�
iently smooth,137
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al algorithms and numeri
al solutions that are not in the asymptoti
mesh 
onvergen
e range. The asymptoti
 range is de�ned as the range of dis
retizationsizes where the lowest-order terms in the trun
ation error dominate.Supposing that an exa
t solution is known 
onsider a series expansion of thedis
retization error in terms of hk, a measure of the element size on mesh level k.
DEk = fk − fexact = gph

p
k + HOT (4.6)where fk is the numeri
al solution on mesh k, gp is the 
oe�
ient of the leadingerror term, and p is the observed order of a

ura
y. The main assumption is thatthe higher-order terms (HOT) are negligible, whi
h is equivalent to saying thesolutions are in the asymptoti
 range. In this 
ase, the dis
retization error equationfor a �ne mesh and a 
oarse mesh is

DE1 = f1 − fexact = gph
p
1 (4.7)

DE2 = f2 − fexact = gph
p
2 (4.8)Sin
e the exa
t solution is known, the left-hand sides 
an be evaluated using thenumeri
al solution. Combining these two equations as follows

DE2

DE1
=
gph

p
2

gph
p
1

=

(
h2

h1

)p (4.9)the observed a

ura
y is then
p =

ln
(

DE2

DE1

)

ln(h2

h1
)

(4.10)138
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t solution only two solutions are required to obtain the observedorder of a

ura
y. The observed order of a

ura
y is e�e
ted by round-o� and iterative
onvergen
e errors. Dis
retized forms of nonlinear equations 
an generally be solvedto within ma
hine round-o� error. Iterative pro
edures are often terminated early toredu
e 
omputational e�ort, alternatively dire
t sparse methods, as already dis
ussed,
an be used to avoid errors asso
iated with iterative methods.4.2 Ele
trostati
s ProblemsThe �rst example presented here is an ele
trostati
s problem. Sin
e the MOOSE is aprototype framework it is 
on
eivable that a well developed PSE might be fully menudriven and suggest appropriate formulas and 
onstants to the user in a problem 
on-text sensitive manner. Commer
ial tools with advan
ed user interfa
es like FEMLABdo pre
isely this. However, as mentioned previously, the fo
us of this thesis is not onuser interfa
e development, but rather on a study of the PSE's essential 
omponentsand the methods required for the pre
ise modeling of motion. Individual 
on
eptualelements, as identi�ed in Chapter 3 will be highlighted and their relevan
e to the 
ur-rent problem mentioned. This �rst example is des
ribed with some additional detailsto give a 
lear idea of what level of intera
tion with the MOOSE is required, subse-quent examples will be less exhaustive in the way they detail the solution pro
ess.The details of the 
losed form representation were taken from [108℄.This model 
omputes the ele
tri
 �eld generated by a pair of wires bent into asquare domain of dimension L × L. From 
lassi
al ele
trodynami
s the ele
tri
alpotential U(x) satis�es Poisson's PDE
▽2U(x) = −4πρ(x) (4.11)139
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0V

100V

Figure 4.1: Ele
tro-Stati
s ModelWhere ρ(x) is the 
harge density at the spatial lo
ation. The above representationis the steady state 
ase so there is no time dependen
e. In 
harge free regions where
ρ(x) = 0 the s
alar potential satis�es Lapla
e's equation:

▽2U(x) = 0 (4.12)In two dimensional re
tangular 
oordinates it takes the form
∂2U(x, y)

∂x2
+
∂2U(x, y)

∂y2
= 0 (4.13)4.2.1 Analyti
 SolutionTo derive an analyti
al solution to Lapla
e's equation, using the method of separationof variables, �rst assume that the problem is the produ
t of independent fun
tions of

X and Y
U(x, y) = X(x)Y (y) (4.14)Be
ause X(x) is a fun
tion of only x and Y (y) of only y, the derivatives are140
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e X(x) and Y (y) are assumed to be independent, theonly way this equation 
an be valid for all values of x and y is for ea
h term to beequal to a 
onstant
d2X(x)/dx2

X(x)
= −d

2Y (y)/dy2

Y (y)
= k2 (4.15)The 
hoi
e of sign for the 
onstant mat
hes the boundary 
onditions and givesperiodi
 behaviour in X, but not in Y . Solutions for X and Y  are

X(x) = Asin(kx) +Bcos(kx) (4.16)
Y (y) = Ceky +De−ky (4.17)The x = 0 boundary 
ondition 
an be met only if B = 0. The x = L boundary
onditions 
an be met only for values of k for whi
h

k = L = nπ , n = 1, 2, 3, ...for ea
h value of n there is a solution for X that is
Xn(x) = Ansin

(nπ
L
x
) (4.18)For ea
h value of kn whi
h satis�es the x boundary 
onditions, the y solution Y (y)must satisfy the boundary 
onditions U(x, y = 0) = 0. This requires D = −C and so

Yn(y) = C
(
ekny − e−kny

)
≡ 2Csinh

(nπ
L
y
) (4.19)In this 
ase the prin
iple of linear superposition holds and this means that the141
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ts Xn(x)Yy(y)

U(x, y) =

∞∑

n=1

Ensin
(nπ
L
x
)
sinh

(nπ
L
y
) (4.20)The En values are arbitrary 
onstants and are �xed by requiring the solution tosatisfy the remaining boundary 
ondition at y = L. For this example the boundary
ondition is U(x, L) = 100V , so

∞∑

n=1

Ensin
(nπ
L
x
)
sinh (nπ) = 100V (4.21)The potential for any point in the spa
e is

U(x, y) =
∞∑

n=1,3,5,...

400

nπ
sin

(nπx
L

) sinh (nπy/L)

sinh (nπ)
(4.22)When evaluating the analyti
 term the sinh() fun
tion may over�ow for largevalues of n. Some of these over�ows 
an be avoided by expressing the quotient of thetwo hyperboli
 sine fun
tions in terms of exponentials

sinh (nπy/L)

sinh (nπ)
=
enπ(y/L−1) − e−nπ(y/L+1)

1 − e−2nπ
(4.23)4.2.2 Finite Di�eren
e SolutionTo formulate this problem and its boundary 
onditions in the MOOSE is straightfor-ward. The user follows the sequen
e of steps:1. Create a data stru
ture with 1 element U, to store the ele
tri
al potential.2. Create 3 
ell types(a) A 
harge free 
ell 142
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ell(
) A 0 Volt potential 
ell3. Create equations for ea
h 
ell type(a) Equations are equivalent ex
ept for the −4πρ(x) term4. Draw the geometry for the problem5. Create the solver program whi
h initializes the problem, solves it, and plots it.Creating the data stru
ture to be solved for is very simple. The data stru
ture editoris laun
hed from the MOOSE's edit menu, a single entry �U� needs to be added tothe new stru
ture, and the stru
ture needs to be saved with a simple name, likeestati
s_pdef.Cells are 
reated in a similar manner, the 
ell editor is laun
hed from the MOOSE'sedit menu, the 3 
ells need to ea
h have 2 �elds de�ned, their data stru
ture, andwhat equations to use.The equation syntax for the MOOSE is quite simple for this problem. Throughthe user interfa
e a text editor 
an be laun
hed and the Lapla
ian equation 
an bewritten as:PDEs:=[[LAPL(U)=0,U℄℄;The MOOSE adopts MAPLE syntax for this 
ase, the variable PDEs is spe
i�ed tothe MOOSE framework as a list of pairs. Ea
h pair in the list 
onsists of a symboli
expression of one of the PDEs, in this 
ase LAPL(U)=0, followed by the name of thevariable to be solved for, in this 
ase U. This expression 
an be though of as de�ninga row of the matrix, by spe
ifying the variable the user is 
larifying whi
h symbol isto represent the diagonal in the matrix. 143
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onditions is expressed simply as:PDEs:=[[U=100,U℄℄;This expression e�e
tively solves a formula to generate a boundary 
ondition. Itsimilarly de�nes a list of pairs, the �rst entry in the pair is an equation, the se
ondentry spe
i�es the symbol asso
iated with the matrix diagonal for the equation. TheMOOSE framework does not make a spe
ial distin
tion between boundary 
onditionsand PDEs. It is up to the model designer to ensure that a simulation domain isadequately spe
i�ed.The zero volt boundary 
ondition is similar to the 100 volt boundary 
ondition.Ea
h equation should be asso
iated with its respe
tive 
ell type, this is managedthrough the MOOSE 
ell editor. Finally a solver program is needed. The basi
 solverprogram is summarized in pseudo 
ode as Algorithm 1. All of the other details ofmatrix 
reation, and equation interpretation are handled by the MOOSE framework.Algorithm 1 Pseudo Code for Ele
trostati
s Solver// in
lude MOOSE definitionsmain(){ Initialize_Model(xdim=100,ydim=100, Copy=1, Equation_Group=1);solverdr_solve(Copy=1, Equation_Group=1);html_figure(title='E-Field',variable=U);}
Noti
e in Algorithm 1 both the 
opy and the equation group must be spe
i�ed.Re
all from the dis
ussion in the previous 
hapter that it is possible to spe
ify multiple
opies, and multiple model group members. For a steady state problem only a single144
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opy is needed and only a single equation set is used. In the next transient examplemultiple 
opies and equation groups will be used.
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Figure 4.2: Errors Plotted Against Mesh Re�nementsFor the sake of 
omparison the 2-norm of the error is used, here de�ned as
‖e‖2 =

√√√√ 1

N
·

N∑

i=1

(exacti −measuredi)
2 (4.24)By examining the error for various mesh resolutions it is possible to 
omputethe observed order of the fun
tion as dis
ussed in se
tion 4.1.3. For this problemthe point at whi
h the 0V boundary 
ondition meets with 100V boundary 
ondition
reates di�
ulties for the model. This illustrates the importan
e of using the 2-norm. If the in�nity norm is used to 
ompare errors, the error in the region of thislo
alized dis
ontinuity will dominate the problem. The 2-norm however provides abetter measure of global error, and is thus a more representative way to 
ompare the145
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al and �nite di�eren
e solutions. If the 2-norm is plotted against the meshre�nement fa
tor then a straight line results as in Figure 4.2. As the mesh re�nementin
reases the line better approa
hes the ideal, the observed a

ura
y is measured tobe 2.01, whi
h 
losely mat
hes the theoreti
al expe
tation of 2.
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Figure 4.3: Errors Measured at Center of the Simulation DomainTo get a more qualitative sense of how the solution 
hanges with in
reased meshdensity Figure 4.3 shows the redu
tion of error a
ross the middle of the simulationdomain. It is interesting to noti
e that in this �gure the errors tend to be at amaximum near the east and west edges of the simulated domain. In addition theerrors are not uniform throughout the domain. This is most likely due to the alreadymentioned di�
ulties in simulating the exa
t point where the dis
ontinuities in theboundary 
onditions meet.
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al and Computer Engineering4.3 Heat Flow in a Metal BarHeat di�usion as it evolves over time 
an be represented in terms of a paraboli
PDE. Heat �ows from regions of high temperature to those of low temperature. Theanalyti
al part of this presentation is taken from [34, 108℄. The rate of heat �owthrough some material is proportional to the gradient of the temperature T withinthe material
H = −K ▽ T (x, t)where K  is the thermal 
ondu
tivity of the material.
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Figure 4.4: An Insulated Metalli
 Bar with Either End in an I
e BathThe total amount of heat energy Q(t) in the material at any one time is propor-tional to the integral of the temperature over the volume of the material
Q(t) =

∫
dxCρT (x, t) (4.25)where C is the spe
i�
 heat and ρ the density of the material. Be
ause energy is
onserved, the rate of de
rease of Q with time must equal the amount of heat �owingout of the material. When this energy balan
e is stru
k and the divergen
e theoremapplied, the heat equation is the result 147
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∂T (x, t)

∂t
=

K

Cρ
∇2T (x, t) (4.26)assuming that the material has a 
onstant density ρ. Equation 4.26 is a paraboli
PDE with spa
e and time as independent variables. The setup of this problem impliesthat there is no temperature variation in dire
tions perpendi
ular to the bar, and sothere is only one spatial 
oordinate to 
onsider for this PDE. The one dimensionalversion is written

∂T (x, t)

∂t
=

K

Cρ

∂T (x, t)

∂x2
(4.27)The initial temperature of the bar is given in addition to a pair of boundary
onditions

T (x, t = 0) = 100

T (x = 0, t) = T (x = L, t) = 04.3.1 Analyti
 SolutionThe analyti
 approa
h is similar to the one presented in the previous example and isbased on the assumption that a solution exists in whi
h the time and spa
e depen-den
ies o

ur as separate fun
tions. The resulting pair of ODEs is
d2X(x)

dx2
+ λ2X(x) = 0 (4.28)
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d2Θ(t)

dt2
+ λ2 K

Cρ
Θ(t) = 0 (4.29)where λ is a 
onstant to be determined. The boundary 
onditions at either end ofthe rod suggest that the solution to the spatially dependent fun
tion X(x) is

X(x) = Asin(λx) (4.30)The requirement that the temperature vanish at x = L determines the possiblevalues for the 
onstant λ
sin(λL) = 0 ⇒ λ = λn =

2π

L
, n = 1, 2, 3, ...

Θ(t) = e−λ2
nt/Cρ (4.31)In this 
ase the prin
iple of linear superposition holds. A solution using all thevalues of n 
an be written as

T (x, t) =
∞∑

n=1

Ansin (λnx) e
−λ2

nt/Cρ (4.32)where n 
an be any odd integer and An is an arbitrary 
onstant. The Fourier expansion
oe�
ients are determined by the initial 
ondition that at time t = 0 the entire barhas a temperature of T = 100. The full solution is an in�nite series
T (x, t) =

∞∑

n=1.3,5,...

4T0

nπ
e−n2π2Kt/(L2Cρ)sin

(nπx
L

) (4.33)
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e SolutionWhile the previous problem solved the �nite di�eren
e solution on a 
losed two dimen-sional mesh this is not ne
essary to solve the paraboli
 problem numeri
ally. Sin
ethere is no prede�ned limit to the time that one might wish to simulate and sin
e thedependen
e of the solution �ows in one dire
tion only, the modeling domain 
an berepresented by two one dimensional ve
tors.In terms of the MOOSE framework this means that two 
opies of the simulationsolution ve
tor and matrix are needed. For this example a 
opy index and a distin
tequation group number are needed. Ea
h solution 
opy is asso
iated with a singlesolution ve
tor; the equation group determines what operation is applied to thatve
tor. In the previous example this distin
tion was unimportant sin
e there wasonly one solution ve
tor, and one operation applied to that solution. The solutionpro
edure for the MOOSE framework is similar to the previous example:1. Create a data stru
ture with 1 element T, to store the 
omputed temperature2. Create 2 
ell types(a) A variable temperature 
ell(b) A 0 degrees Celsius 
ell3. Create equations for ea
h 
ell type4. Draw the geometry for the problem5. Create the solver program whi
h initializes the problem, solves it, and plots it.For this problem the sup[℄ operator is used. This operator indi
ates that a supers
riptis being employed, where the index of the supers
ript refers to values derived from150
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ase represented by a separate 
opy of the solution ve
tor.The formulation in se
tion 4.1.3 uses supers
ripts to indi
ate di�erent time referen
es,this is where the sup[℄ notation was derived from.Algorithm 2 Transient PDEsif eq_grp = 1thenPDEs:=[ [T=sup[T,2℄+h*K/(C*p)*LAPL(T), T℄ ℄;elif eq_grp = 2thenPDEs:=[ [T=sup[T,1℄+h*K/(C*p)*LAPL(T), T℄ ℄;end if;The PDEs in Algorithm 2 and variable pairs follow the analyti
al spe
i�
ation ofthe problem. The equation T=sup[T,2℄+h*K/(C*p)*LAPL(T), should be read T 1 =

T 2 + h · K/ (C · p) · ▽2T 1. Noti
e how in this 
ase spe
ifying T as the variableto be solved for makes a di�eren
e, sin
e there are other variables in the equationwhi
h are simply 
onstants. The 
onstants will appear symboli
ally in the matrixgenerator 
ode, the user 
an de�ne their values through global variable de�nitions.The variables whi
h are not spe
i�
ally identi�ed by supers
ripts are inferred to applyto the 
urrent solution ve
tor 
opy. This equation should be 
ompared with equation4.3 and equation 4.26.For this example the solution me
hanism always applies equation group 1 to ve
tor
opy 1, and equation group 2 to ve
tor 
opy 2. The pre
ise solution regime is notpredetermined by the MOOSE framework, this solution me
hanism is presented as atypi
al formulation. The solution methodology follows that des
ribed in Chapter 3,where a pair of ve
tors are 
onstru
ted and a pair of equation are spe
i�ed and usedin alternating su

ession. Noti
e that the equations in group 1 refer by supers
riptsto values derived in 
opy 2. Similarly equations in group 2 refer to values derived151
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all that the equations spe
i�ed by the user are not applied dire
tly, but ratherthey are translated by the MOOSE framework into a matrix representing a system ofequations whi
h 
an be solved by a variety of linear solvers whi
h are 
ompatible withthe framework. Also re
all that part of the work that the MOOSE framework does isto seamlessly solve issues related to moving meshes as they may o

ur in a transient�nite di�eren
e simulation. Noti
e that the above equations only refer abstra
tly tovariables and ve
tor 
opies, the MOOSE framework handles the details of translatingthese PDEs between the numeri
al spa
e of the linear solver, and the representativespa
e of the spatial model.These equations are impli
it in spa
e and expli
it in time, as 
ompared with theequation 4.3 whi
h is expli
it in both spa
e and time. Using a formulation whi
h isimpli
it in spa
e provides better stability properties at the 
ost of a more 
omplexsolution method, as was dis
ussed in the previous 
hapters. By using a two ve
torimplementation the memory 
onsumption of the solver remains the same no matterhow mu
h time is simulated, and any number of time steps 
an be modeled.Algorithm 3 Transient solver For Heat EquationInitialize_Model(xdim=1,ydim=0.1, Copy=1, Equation_Group=1);Initialize_Model(xdim=1,ydim=0.1, Copy=2, Equation_Group=2);write_all(Copy=1, Variable=T, 100); // set the initial temperaturet=0;while(t < 100) {solverdr_solve(Copy=2, Equation_Group=2);solverdr_solve(Copy=1, Equation_Group=2);t=t+2*h;}
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al and Computer EngineeringThe solver program is similar to the previous one, ex
ept that it must de�ne aninitial 
ondition, and apply a sequen
e of steps to solve the problem. The user 
an
hange the step size h during the 
ourse of this exe
ution using step size doublingas dis
ussed in 
hapter 2, or any other step size estimation te
hnique, although 
odefor adjusting the step size is not presented in this example. The example 
ode inalgorithm 3 shows how the two separate model 
opies are initialized and solved for.
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Figure 4.5: Errors versus Mesh DensityFor this example a 
onstant time step is used. The simulation is run for 1000se
onds and the 
onstants K, p and C are 
hosen to re�e
t the physi
al 
onstants foriron. Using the same te
hniques presented in the previous example the order of thespatial terms is determined to be 1.9. The plot whi
h 
ompares errors versus meshre�nement is illustrated in Figure 4.5. This plot is di�erent in a few respe
ts to theprevious example. The slope of the 
urve is di�erent sin
e the mesh is one dimensional,hen
e the ratio of 
ells sizes is di�erent. Also the problem is of a fundamentally153



PhD thesis D. Gilbert M
Master - Ele
tri
al and Computer Engineeringdi�erent type, so the initial segments of these 
urves where the problem performspoorly angle in opposite dire
tions.4.4 Wave on a StringThe wave equation is an example of a hyperboli
 PDE. This thesis has not pla
ed mu
hemphasis on the study of hyperboli
 PDEs, however the MOOSE framework is 
apableof handling them as this example will illustrate. Hyperboli
 PDEs have their ownspe
ial set of di�
ulties, and while the MOOSE framework supports the fundamentalprimitives ne
essary for their implementation modeling hyperboli
 fun
tions is not
urrently one of the frameworks' strengths. The analyti
al solution is partially derivedfrom [108℄.Consider a string of length l, tied down at both ends . The string has a 
onstantdensity per unit length ρ, a 
onstant tension τ , and is subje
t to neither fri
tion norgravitational for
es. The verti
al displa
ement of the string from its rest position isdes
ribed by a fun
tion of two variables y(x, t), where x is the horizontal lo
ationalong the string and t the time. The string is only displa
ed in the verti
al dire
tion.To derive a linear equation of motion it is assumed that the displa
ement and slopeof the string are small. An in�nitesimal se
tion ∆x of the string is isolated. FromNewton's equations the se
ond law of motion indi
ates that the sum of the verti
alfor
es on the string se
tion must equal the mass times the verti
al a

eleration of these
tion
∑

Fy = ρ△ x
∂2y

∂t2
(4.34)the for
es are the 
omponents of the string's tension τ . The verti
al 
omponents of154
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al and Computer Engineeringthe tension on ea
h end of the segment 
hange as the angle of the string 
hanges, andthose 
omponents are obtained by relating the slope of the string to ∂y
∂x

∑
Fy = τ

[(
∂y

∂x

)

x+∆x

−
(
∂y

∂x

)

x

]
= τ

∂2y

∂x2
(4.35)

∂2y(x, t)

∂x2
=

1

c2
∂2y(x, t)

∂t2
(4.36)The propagation speed c is denoted by

c =
√
τ/ρ (4.37)Sin
e both ends of the string are tied down, the boundary 
onditions are that thedispla
ements must vanish for all times at the end of the string. The initial 
onditionat t = 0 is represented by the plu
king of the right side of the string. The plu
king ofthe string is modeled by the following fun
tion

y(x, t = 0) =






1.25x/l for x ≤ 0.8l

5.0(1 − x/l) for x > 0.8l
(4.38)Be
ause the model uses a se
ond order equation in time, a se
ond initial 
onditionis needed to determine the solution. The se
ond initial 
ondition is that the plu
kedstring is released from rest

∂y

∂t
(x, t = 0) = 0
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al and Computer Engineering4.4.1 Analyti
 SolutionThe analyti
 solution is obtained via separation of variables. As before the waveequation is assumed to be a produ
t of a fun
tion of two fun
tions, one in spa
e, theother in time.
y(x, t) = X(x)T (t) (4.39)Solutions to the following two ODEs are needed,
d2T (t)

dt2
+ ω2T (t) = 0 (4.40)

d2X(x)

dt2
+ k2X(x) = 0 (4.41)Where k = ω

c
. The angular frequen
y ω and the wave ve
tor k are determined bydemanding that the solutions satisfy the boundary 
ondition whi
h spe
i�es that thestring is atta
hed at both ends.The 
orresponding solution for the time equation is

Tn(t) = Cnsin(ωnt) +Dncos(ωnt) (4.42)
ωn = nω0

ω0 = ck0 =
2πc

lThe pre
eding solutions are the nth normal modes where by de�nition, ea
h mode156
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illates at a single frequen
y. The initial 
ondition requires the Cn values to be zero.For a string with its ends �xed and initially at rest, there are solutions of the waveequation of the form
y(x, t) =

∞∑

n=1

Bnsin(knx)cos(ωnt) (4.43)The Fourier 
oe�
ients Bn are determined by using the �rst initial 
onditionswhi
h des
ribes how the wave is plu
ked. They are found to be
Bn = 12.5

sin(0.8πn)

n2π2
(4.44)The �nal series is

y(x, t) =
∞∑

n=1

12.5
sin(0.8πn)

n2π2
sin(πnx/l)cos(

√
τρπnt/l) (4.45)
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e Solution
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Figure 4.6: Solutions to the Wave on a String ProblemHyperboli
 problems tend to su�er from numeri
al errors in ways quite di�erentfrom ellipti
 or paraboli
 problems. The vast literature on �uid dynami
s and te
h-158
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tri
al and Computer Engineeringniques for solving problems related to the Naiver Stokes equations are a testamentto this. Hyperboli
 solutions 
an exhibit wave fronts and other sharp dis
ontinuitieswhi
h are di�
ult to model espe
ially over many iterations.Algorithm 4 Hyperboli
 PDEs for the Wave on a String Problemif eq_grp = 1thenPDEs:=[[Y=2*sup[Y,3℄-sup[Y,2℄+h*h*Tau/p*LAPL(sup[Y,3℄), Y℄ ℄;elif eq_grp = 2thenPDEs:=[[Y=2*sup[Y,1℄-sup[Y,3℄+h*h*Tau/p*LAPL(sup[Y,1℄), Y℄ ℄;elif eq_grp = 3thenPDEs:=[ [Y=2*sup[Y,2℄-sup[Y,1℄+h*h*Tau/p*LAPL(sup[Y,2℄), Y℄ ℄;elif eq_grp = 4thenPDEs:=[ [Y=sup[Y,1℄+.5*h*h*Tau/p*LAPL(sup[Y,1℄), Y℄ ℄;end if;
The PDEs used are presented in their MOOSE notation form in algorithm 4. Theimplementation is se
ond order in spa
e and in time, a simple expli
it formulation wasused. The heat di�usion problem, dis
ussed in the previous se
tion, used two equationgroups and two ve
tor 
opies to model the transient phenomena of heat di�usion. Forthe wave equation three ve
tor 
opies are used with four equation groups.Three ve
tor 
opies are needed to represent a 
entered �nite di�eren
e formulationin time. Ea
h one of the ve
tor 
opies represents a di�erent instan
e in time, and theset of three equation groups must be solved in a 
y
li
 fashion similar to the solutionstrategy used in the pre
eding example.The �rst three equation groups are similar to the two equation groups used tosolve the heat equation, ex
ept that ea
h group refers to variables in two other ve
tor
opies. The fourth equation group is a spe
ial 
ase whi
h allows the simulation to159
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ondition has beenstored in the ve
tor whi
h represents the �rst simulation 
opy. It uses a dis
retizationwhi
h is �rst order in time to 
ompute the string position for the se
ond ve
tor 
opy.The �rst initial 
ondition des
ribes the shape of the string immediately after beingplu
ked and provides a basi
 triangle wave form for the string. This initial 
onditionwas 
oded inside the main solver program, although in prin
iple it 
ould have been alsorepresented by a �fth equation group. Using a separate equation group to initialize amodel was dis
ussed abstra
tly in the third 
hapter.The simulation results are presented in Table 4.6 for six snapshots of the evolutionof the simulation. For this simulation ea
h time step was equivalent to 1/1000th ofa se
ond, the �rst �gure in the table is 
omputed after .305 se
onds have elapsedand shows the vibrating string in the position that it was in when the simulationwas started both for the analyti
al 
ase, the solid line, as well as the �nite di�eren
emodel. The string retains a triangle shape throughout its vibration be
ause the modelis fri
tionless. Ea
h subsequent �gure shows the evolution of the model in .005 se
ondin
rements. As this model progresses in time its shape will tend to deteriorate and itwill diverge further and further from the 
orre
t solution. Even in the �rst 1/3rd of ase
ond irregularities in the solution are beginning to appear, espe
ially near the wavefront, and along the trailing edge of the wave.4.5 Veri�
ation of Pat
hed Mesh Linking RulesA 
riti
al problem in building the pat
hed mesh matrix generation 
ode was ensuringthat the mesh linkages do not introdu
e ex
essive errors into the eigenvalue solution.For the purposes of veri�
ation a series of steady state models were developed andtested at various resolutions using a variety of test 
riteria. This se
tion will present160
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al and Computer Engineeringtwo representative tests whi
h illustrate the degree to whi
h the 
onservation rulesare able to 
orre
t errors, and under what 
ir
umstan
es. Error 
orre
tions a
hievedthrough 
onservation rules are highly problem dependent, although 
ertain trendsremain 
onsistent a
ross most tests. During the 
ourse of the development of theMOOSE libraries hundreds of test 
ases were studied in the attempt to establish asimple and meaningful rule-set. The rules des
ribed at the end of Chapter 3 will beillustrated in this se
tion with two examples.4.5.1 Geometri
 Conservation Rule Veri�
ationThe �rst example is based on the ele
trostati
s problem presented earlier in this
hapter. This problem is used to illustrate the geometri
 requirements of linked meshesby examining the errors indu
ed by linking two meshes of di�erent resolution.
0V0V

0V

100V

Figure 4.7: Partitioned Ele
trostati
 ProblemFigure 4.7 shows a mesh 
onstru
tion whi
h uses a doubly re�ned mesh near thetop 1/3rd of the problem 
losest to the 100V potential and a less re�ned mesh for therest of the problem. The intuition behind su
h a mesh partition is that the solutionhas a higher gradient in the top portion of the mesh, and hen
e requires more points161
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urately model its behaviour. Errors whi
h result from the mesh 
onne
tionstrategy will be 
ompared with the 
losed form solution. Errors for individual pointsare weighted by the 
ell area, so that errors in larger 
ells have a bigger impa
t thanerrors in smaller 
ells. Top Mesh 18x6Bottom Mesh Total Linear NonLinear ConservationDimensions Points Errors Errors Errors18x12 324 1.53 1.53 1.5315x10 258 10.2 10.4 1.6713x9 225 22.9 19.0 1.6710x7 178 53.9 41.7 2.079x6 162 66.1 55.7 2.586x5 136 116.9 107.9 4.72Top Mesh 36x12Bottom Mesh Total Linear NonLinear ConservationDimensions Points Errors Errors Errors36x24 1296 .41 .41 .4130x20 1032 5.13 4.99 .4127x18 918 10.0 8.31 .4221x14 726 24.5 18.7 .5518x12 648 33.0 27.5 .7414x9 558 54.6 48.8 1.10Table 4.1: Mesh Conne
tion Errors for Two ResolutionsTable 4.1 tabulates error measurements for two di�erent starting resolutions for theele
trostati
s problem. The �rst 
olumn spe
i�es the mesh dimensions for the bottom2/3rds of the mesh. The top 1/3rd of the mesh remains 
onstant in dimensions forboth tests. The se
ond 
olumn gives a 
ount of the total number of points in the mesh.The next three 
olumns tabulate measured errors for three di�erent mesh 
onne
tionstrategies. Linear errors are those errors measured when only linear interpolationis used to 
onne
t meshes. NonLinear errors are the errors measured when only162
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al and Computer Engineeringnon-linear interpolation methods are used to 
onne
t the mesh. Re
all from theprevious 
hapter that non-linear methods alone will only produ
e reasonable resultswhen meshes are out of alignment, not when mesh 
ells on either side of a boundaryare of di�erent sizes. This test 
learly illustrates this phenomena. The �nal 
olumnshows the measured error when the geometri
 
onservation rule is used to link meshes.It should be 
lear that for both examples even when a large redu
tion in the numberof points is used to model the simulation domain, the impa
t on the measured errorfor the 
onservation geometri
 rule is very moderate.It is interesting to 
ompare several 
ases. Take for example the 36x36 
ase where648 points are used to 
ompute a result. The error generated by this formulationwithout 
onservation using non-linear interpolation is an order of magnitude worsethan the error generated in the 18x18 
ase using 324 points with no spe
ial re�ne-ment or 
onne
tion strategies. This 
ase shows that haphazard mesh inter
onne
tionsmay not produ
e results whi
h are any better than those whi
h 
an be derived withstandard regular meshes.It is important to keep in mind that this example problem is 
onstru
ted spe
if-i
ally to highlight a situation where non-linear interpolation alone fails to providesatisfying results for a simple mesh inter
onne
tion strategy. For this problem 
on-servation was used to 
orre
t errors whi
h appeared not only between the top andbottom meshes, but also between the bottom mesh and the 0V boundary 
onditionmesh, whi
h was modeled at the same resolution as the top mesh. From the previousdis
ussion on the ele
trostati
s problem errors tend to be high along the left and right0V boundaries. As the next set of test results indi
ates, geometri
 issues are not ne
-essarily the primary 
on
ern for 
ertain models sin
e the user 
an arbitrarily 
ontrolmesh depth. Other model details, in parti
ular, moving material dis
ontinuities, maybe part of the problem de�nition and more di�
ult to 
ompensate for.163
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ontinuity Conservation Rule Veri�
ationIn situations where material dis
ontinuities must be dealt with along mesh boundarieserrors 
an arise when poor estimates for di�usion 
onstants are used. As dis
ussed inthe implementation 
hapter, these errors 
an be avoided by sele
ting the dire
tion forwhi
h the 
onservation rule is applied. For this example a two dimensional eigenvalueproblem is 
hosen based on the neutron di�usion problem introdu
ed in 
hapter 2.Although no 
losed form solutions exist for the two dimensional problem, a simpli�edone dimensional problem taken from [53℄ illustrates some 
on
epts.A simpli�ed version of the transient neutron di�usion equation 2.7 whi
h negle
tsthe delayed pre
ursor sour
e terms and is expressed in only one spatial dimension andwith only one energy group 
an be written as
1

v

∂φ

∂t
−D

∂2φ

∂x2
+ Σaφ(x, t) = νΣfφ(x, t) (4.46)As with the previous problems in this 
hapter, separation of variables is used

φ (x, t) = ψ(x)T (t) (4.47)It is possible to rearrange equation 4.46 by substituting equation 4.47 to derive
1

T

dT

dt
=
v

ψ

[
D
∂2ψ

∂x2
+ (νΣf − Σa)ψ(x)

]
= constant = −λ (4.48)The spatial 
omponent of equation 4.46 
an be isolated and written as

D
d2ψ

dx2
+

(
λ

v
+ νΣf − Σa

)
ψ (x) = 0 (4.49)As a sample problem 
onsider a one dimensional in�nite slab rea
tor whi
h haswidth a and �xed boundary 
onditions ψ (

a
2

)
= 0 and ψ (

−a
2

)
= 0 . λ is still to be164
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d2ψ

dx2
+B2

nψ (x) = 0 (4.50)has symmetri
 solutions for
ψn = cos (Bnx) (4.51)

B2
n =

(nπ
a

)2

, n = 1, 3, 5, ... (4.52)where λn is 
hosen to be
λ = vΣa + vDB2

n − vνΣf ≡ λn , n = 1, 3, 5, ... (4.53)The fundamental mode for the idealized slab rea
tor is a rough approximation ofthe neutron �ux shape whi
h more 
omplex problems have. The shape of the �uxpro�le for the slab rea
tor is 
hara
terized by the 
osine
φ(x) = cos

(πx
a

) (4.54)Chara
teristi
s of the eigenvalue steady state neutron di�usion solution involvesear
hing for the lowest eigenvalue. The 
orresponding eigenve
tor is symmetri
,all elements of the ve
tor are the same sign, normally represented as positive. Themaximum �ux value o

urs roughly in the 
enter of the problem domain, the minimum�ux value is normally zero and is normally lo
ated at the edge of the problem domainand 
an be represented by a �xed boundary 
ondition.A hypotheti
al re
tangular 
ore is modeled in two dimensions shown in �gure 4.8.165
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tri
al and Computer EngineeringThe PDE whi
h governs di�usion for this problem is
−▽ ·D▽ φ+ Σr =

1

k
Σfφ (4.55)The 
ross se
tion and rea
tion rate 
onstants were 
hosen in an arti�
ial way sothat the eigenvalue solution would be exa
tly 1. One edge of the 
ore is bounded bya mesh dis
ontinuity. The mesh is divided in two se
tions, but the top and bottommesh se
tions are of equal resolution. A wrap around geometry is used to 
onne
t thenorth and south edges of the mesh as well as the east and west edges of the mesh asillustrated in Figure 4.8.
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Figure 4.8: Partitioned Moving Mesh with Wrap Around GeometryWrap around geometry settings are 
onvenient for some problems whi
h involvemoving meshes sin
e they allow 
ells whi
h leave one side of the simulation domainto re-enter on the opposite side. It is also possible to squash and extend intermediatemesh 
omponents to fa
ilitate motion, however, wrap around geometries provide thesimplest implementation for moving mesh 
omponents. For this example repositioningthe mesh does not a
tually 
hange the problem. While no 
losed form solution exists166
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tri
al and Computer Engineeringfor this problem it should be obvious that if the mesh inter
onne
tion strategy is ideal,shifting the lower mesh by any fra
tion should not 
hange the fundamental eigenvalue.The eigenvalue 
omputed when the 
ells in the top and bottom mesh are aligned is
onsidered to be 
orre
t, and any deviation whi
h is a 
onsequen
e of shifting themesh is 
onsidered to be an error.
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Figure 4.9: Motion ErrorFigure 4.9 illustrates the deviation in 
omputed eigenvalues for two mesh 
on-ne
tion strategies. The �rst strategy uses nonlinear interpolation alone, the se
ondstrategy uses 
onservation rules to avoid estimating di�usion 
onstants for 
ells whi
hmust handle material dis
ontinuities. Nonlinear interpolation is used to 
onne
t allother 
ells. This result is quite interesting sin
e at any given displa
ement for thelower mesh there will be no more than 4 estimated di�usion 
onstants, yet by esti-mating �ow through the use of 
onservation rules instead of the estimated 
onstantsan error redu
tion for this problem of a fa
tor of twenty is possible.167
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ussionThis 
hapter has presented a some basi
 theory behind veri�
ation strategies 
om-bined with a 
olle
tion of problems whi
h illustrate how the MOOSE framework wasveri�ed. Closed form solutions provide a rigorous ben
hmark to 
ompare 
omputednumeri
al solutions against. Using 
losed form solutions to verify a simulation modelis somewhat limiting in the sense that only 
ertain problems 
an be studied in thisway.This 
hapter should also 
larify 
ertain questions related to the MOOSE frame-work's usage. Some of the examples presented in Chapter 3 were des
ribed in ane
essarily abstra
t terminology in order to 
apture the generality of the framework's
apabilities. Comparing the dis
ussion in Chapter 3 with the simpli�ed 
on
rete ex-amples in this 
hapter should illustrate how the MOOSE framework handles varioussimulation types.The veri�
ation of the geometri
 
onservation rule and the material dis
ontinuity
onservation rule presented in the previous two se
tions represents some of the testsperformed on the framework to verify its 
orre
t behavior. Any framework whi
h at-tempts to implement pat
hed moving meshes should be tested under at least similar
ir
umstan
es. The s
enarios presented in the pre
eding two se
tions are idealizedand only apply in 
ertain situations. When 
hoi
es must be made between the mate-rial dis
ontinuity 
onservation rules and the geometri
 
onservation rules, it is oftenbest to 
hoose in favour of satisfying the material dis
ontinuity rules. This 
hoi
eis largely heuristi
 and to a 
ertain extent will be determined by the exa
t problemformulation. Con�i
ts 
an arise su
h that it is not possible to satisfy either the ma-terial dis
ontinuity rule or the geometri
 rule. The rules also depend on the spe
i�
geometry of the problem, the number of 
ells and the size of the 
ells.168



PhD thesis D. Gilbert M
Master - Ele
tri
al and Computer EngineeringThe overall impa
t of using 
onservation rules in a realisti
 s
enario is presentedin the next 
hapter within the 
ontext of the rod insertion 
ase study. As will bedemonstrated, despite the potential for 
on�i
t in the rule-set, generally very gooderror redu
tion 
an be a
hieved.
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Chapter 5
Simulation Studies
This 
hapter presents a sequen
e of studies examining a fuel assembly insertion exper-iment, similar to the fuelling in
ident that o

urred at the M
Master Nu
lear Rea
torin January 1994. The January 1994 fuelling in
ident involved the insertion of a fuelassembly worth an estimated 24.8 mk1 over an estimated 20 se
ond period to a par-tially assembled 
ore. The 
ore had an initial keff of 0.983 and an initial power of13mW. The point kineti
s models used at the time 
on
luded that the best estimatepeak power was approximately 8.4 MW.This 
hapter des
ribes a sequen
e of related simulation appli
ation built with theMOOSE framework. The te
hniques provided by the MOOSE are leveraged in this
hapter for the development of a simulation study, as well as for the veri�
ation ofthe MOOSE.The goal of this 
hapter is to 
onstru
t a reasonably a

urate two dimensionalapproximation of the refueling in
ident that will exe
ute within a reasonable periodof time. The �rst se
tion des
ribes the 
alibration and simulation setup that was used.The se
ond se
tion will explore numeri
al stability and a

ura
y issues using various1mk is a relative unit of measure 
orresponding to 1/1000th of keff , see [53℄ for a 
ompletedis
ussion of rea
tivity measurements 170



PhD thesis D. Gilbert M
Master - Ele
tri
al and Computer Engineeringapproximations. The third se
tion will present a series of transient simulations usingthe best solutions provided in the previous se
tions.The goal of these simulations is to generate a good solution in a short period oftime. Sin
e it is always possible to redu
e the size of time steps and in
rease thenumber of 
ells used to model the s
enario an e�ort has been made to examine the
oarsest approximations that remain 
onvin
ing.5.1 Simulation ParametersThis se
tion dis
usses the various simulation parameters whi
h were used to 
on�gurethe rea
tivity insertion model. Approximations, 
alibrations, and various simpli�
a-tions to the general model are summarized.5.1.1 ApproximationsBe
ause the goal of this study is to examine the e�e
t of the use of moving gridson the transient neutron di�usion equation some latitude has been taken with a fewof the 
lassi
al simulation elements. The 
on
lusions that are drawn regarding theMOOSE's methodology should apply equally well to a more rigorously 
on�guredsimulation whi
h makes fewer assumptions. The 1994 refueling in
ident 
aused severalof the data re
orders to go o� their s
ales, so no a
tual measured data are availablefor 
omparing simulated peak power with the a
tual event.The most signi�
ant approximation used in this study is that of examining a twodimensional view of the simulation s
enario rather than a full three dimensional view.Sin
e the prin
iple point of referen
e is the zero dimensional point kineti
s study thetwo dimensional study is presented with some 
on�den
e that it will provide moredetail and some additional insights into the spatial 
omponents of the rea
tor 
ore.171
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tri
al and Computer EngineeringSeveral spe
ial 
ore elements are not represented, in
luding re�e
tors, the beryl-lium sour
es, and sample inje
tion points. Burn-up of the 
ore is treated in a verygeneral way. Cross se
tion 
onstants were 
omputed so that the burn-up of the 
orewas approximately uniform at around 25%.Cross Se
tion DataAlthough the simulation 
onstants were extra
ted from the WIMS data base, theWIMS transport 
odes were not used to either 
ollapse the 
onstant groups or togenerate 
onstant mixtures. A simpli�ed student WIMS data base was used. This69 group data base was originally 
ompiled by Jeremy Whitlo
k in 1992 [170℄. A 69group di�usion study for a simple 
ore geometry was run to generate a detailed �uxdistribution for the MNR. This �ux distribution was used to 
ollapse the 69 groupdata base into smaller groupings of 12, 8, 5, 4, 3 and 2 energy levels. This �uxspe
trum and the lo
ation of the top boundaries of the 12 energy group divisions isplotted in Figure 5.1.The energy group divisions are based on a te
hni
al do
ument [46℄ written bySimon Day, and 
orrespond roughly to energy group divisions used in MNR simula-tions today. Table 5.1 lists the 12 energy levels of the largest grouping, and showshow the smaller groups represent unions of the larger group divisions. Simulationsrun under the two group approximation 
orresponded with the other simulations bestwhen the 821000 eV upper boundary was used for its thermal group. The note in theleft 
olumn of the table refers to the dis
ussion of the rationale of the sele
tion of theenergy boundary in Simon Day's te
hni
al do
ument2.2Simon Day provided a great deal of assistan
e in the development of the simpli�ed 
ross se
tionsused in this thesis. Simon re
ommended against using WIMS, the transport theory based 
rossse
tion 
ollapsing tool used at the MNR, due to the amount of time that would have been requiredto understand it. Many thanks to him for his patien
e and hours answering questions on these issuesand suggestions for developing simpli�ed, but reasonable alternative data.172
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Figure 5.1: Flux Distribution used for Simpli�ed Group CollapsingBin Label eV 12Grp 8Grp 4Grp 2Grp Note1 1E+7 x x x x upper level of 1st group2 821000 x x x x IAEA TECDOC2333 500000 x �ssion threshold of U2384 41000 x s
attering 
ross se
t. of H5 9118 x x x 
onstant di�usion 
oef6 148 x7 9.87 x x8 1.3 x x handles PU240 resonan
e9 0.625 x x x thermal epithermal division10 0.28 x11 0.18 x x Burnable Absorber12 .08 x xTable 5.1: Energy Groups
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al and Computer EngineeringThe generation of multi-group 
onstants using a transport 
ode like WIMS 
an bean extremely di�
ult and time 
onsuming task, and so it was avoided. In additionto not using a transport 
ode to 
ollapse the 
onstants simple weighted averages wereused to mix the 
ell 
onstants, and all materials were assumed to be at room temper-ature. Su
h te
hniques 
annot take 
ertain phenomena into a

ount, like quantumresonan
e e�e
ts, or temperature related Doppler shifts whi
h o

ur for some materialmixtures and under 
ertain operating 
onditions, and so the 
onstants used for thisstudy have limited validity.The energy spe
trum of delayed neutrons from thermal neutron indu
ed �ssion ofU235 is the poorest known of all input data in rea
tor 
al
ulations. Delayed neutronsare born at a lower energy than their prompt 
ounter parts. Doroshenko [50℄ dis
ussesthe di�
ulties in measuring the data as well as te
hniques for approximating it an-alyti
ally. For the experiments in this 
hapter it was roughly estimated that for the
omposite delayed spe
trum 20% of all neutrons are born above the .821 MeV thresh-old, 30% are born between .821MeV and .5MeV, the remaining 50% of the delayedneutrons are produ
ed between the .5 MeV and 41 KeV.Despite the various approximations there is no reason to believe that the 
ross se
-tional data used in this 
hapter is inappropriate for 
omparing simulation te
hniques.Sin
e this study is an experimental one whi
h examines new numeri
al methods formodeling motion, fo
us was pla
ed on the relative a

ura
y of ea
h model, ratherthan on the pre
ise 
orresponden
e of the model with absolute measurements.5.1.2 CalibrationTo 
ompensate for errors introdu
ed by the simpli�ed 
ell 
ollapsing te
hniques andthe approximate two dimensional interpretations, models were designed so that ea
h174
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iple feature 
ould be adjusted. Steady state models were used to 
he
kpointvarious rod positions and the 
ore simulation was 
alibrated by adjusting 
ertain
onstants. The 
he
kpoints in
lude1. Shim inserted 13%, fuel inserted 0%, keff = .9832. Shim inserted 13%, fuel inserted 100% keff = 1.009 + /− .00153. Shim inserted 100%, fuel inserted 100% keff = 0.9195The simulation is most sensitive to the maximum estimate of keff . While errorestimates in the low values for keff are ignored in this study, an error of about 10% inthe estimate of the worth of the fuel assembly is taken into a

ount, whi
h is re�e
tedin the se
ond 
alibration point. These errors are appli
able in the 
alibration of thetransient model and are dis
ussed in the next se
tion.Steady State CalibrationThe steady state simulation is 
alibrated in three di�erent ways. The worth of theshim rods is only approximately spe
i�ed for this problem and is 
ited as between75mk and 100mk in the MNR safety report, depending on fuel loading patterns, andfuel burn up. For these experiments 88mk was used as the insertion worth. Thepre
ise 
omposition of the shim rods was adjusted to alter their worth. In the twodimensional representation of the 
ore two shim rods are used to represent the 5 shimrods and one regulating rod that are present in the a
tual rea
tor. The 
ross se
tional
onstants whi
h represent the shim rod 
omposition of 80% Ag, 15% In, 5% Cd areaveraged with a set of 
onstants whi
h repla
e AL for the materials whi
h wouldnormally absorb neutrons. The initial position of the shim rod is set at about 13%insertion, or 8 
m. 175
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Master - Ele
tri
al and Computer EngineeringThe worth of the inserted fuel assembly is 
alibrated by adjusting the burn upof the stationary fuel assemblies in the 
ore. This te
hnique was 
hosen rather thandire
tly adjusting the burn up of the inserted assembly to keep the experiments asuniform as possible. For ea
h test 
ase the inserted assembly, and the assembliesdire
tly to its left and its right are set at 25% burn up. Sin
e the fo
us of many of thetests investigates the details of the intera
tion between the moving fuel assembly andits neighbours it is important that the 
ross se
tions whi
h represent these 
omponentsremain �xed throughout all the tests. Calibrating the 
ore by adjusting the burn-upof the stationary assemblies redu
ed the impa
t of 
alibration on the 
omparison oftests.Fine 
alibration of the initial steady state model was done using a �oating point
onstant fcal whi
h was multiplied by the �ssion spe
trum term χg to adjust theoverall rea
tivity of the fuel. The steady state version of the neutron di�usion equationin
luding the 
alibration term is written as
−▽ ·Dg ▽ φg + ΣRgφg −

G∑

g′=1

ΣSg′gφg′ =
fcalg

k
· χg

G∑

g′=1,g′ 6=g

νΣfg′φg′ (5.1)Calibrating a model using these various end point 
onditions is not very time
onsuming. The eigenvalue steady state problem for this model runs on a modest PCin under 60 se
onds for the 5 group model so it is relatively easy to exe
ute severalvariations of the problem during the model 
alibration.The 
alibration algorithm uses a simple iterative solver whi
h examines the dif-feren
es between 
omputed eigenvalues for various rod and assembly positions andadjusts the 
alibration parameters a

ordingly. First the algorithm adjusts the shimrod 
omposition until it has a
hieved a 
ertain degree of pre
ision. The model al-ternately removes and inserts the shim rods 
he
king the di�eren
e in the 
omputed176
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al and Computer Engineeringeigenvalues for the 13% inserted position and the 100% inserted position.In the se
ond phase the algorithm adjusts the 
ore burn-up to set the rea
tivity ofthe inserted fuel assembly. For this estimate the shim rods are withdrawn to the 13%insertion position so the fuel assembly worth is 
an be estimated. The 
alibrationfun
tion 
y
les ba
k and forth between these two phases, adjusting the shim worthand the inserted fuel assembly worth until both have a
hieved the required degree ofa

ura
y. The 
alibration algorithm allows for a 1/2 mk error (0.05%) in the shimworth but only a .02 mk error (0.002%) in the fuel worth.Table 5.2 summarizes the 
ore burn-ups that were used to a
hieve equality betweenthe various models as well as the f
al parameter. These �gures indi
ate that the
ell 
ollapsing te
hniques used to generated the various energy group 
onstants leadto some di�eren
es between models derived at various energy groups. Comparisonbetween results taken from simulations performed at di�erent energy groups whi
hdi�er by an amount on the order of 10% will be understood to be the result of errorsindu
ed by the 
ollapsing pro
edures and subsequent re
alibration.Total Energy Divisions Core Burn-up fcal2 33.97% 0.944034 27.28% 0.933918 28.27% 0.9421712 26.75% 0.94951Table 5.2: Core Burn-up and f
al Adjustments
Transient CalibrationThe transient problem uses the same basi
 
alibration points as the steady stateproblem, although sin
e the transient equations are somewhat more 
ompli
ated, inparti
ular due to the in
lusion of the delayed pre
ursors and a non-zero ba
kground177
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al and Computer Engineeringradiation sour
e term, it requires some extra adjustments. A sub-
riti
al rea
tor 
orebehaves like an ampli�er with an ampli�
ation fa
tor of 1/ (1 − k) so the additionalneutrons in
luded as part of the sub-
riti
al sour
e tend to 
hange the behaviourof the 
ore when it is 
lose to 
riti
ality. In addition the small fra
tion of delayedpre
ursors required for the 
ontrol of a 
riti
al 
ore do not 
orrespond exa
tly withthe prompt neutrons modeled in the steady state simulation.A sub-
riti
al 
onstant �ux level is added to the simulation a
ross all energy groupsto model ba
kground radiation. The rea
tor depends on sub-
riti
al neutrons pro-du
ed by the spontaneous �ssion of fuel byprodu
ts as a neutron sour
e for startingthe rea
tor. Mathemati
ally this is represented by the in
lusion of a 
onstant fa
torin the transient version of the neutron di�usion equation. The transient version ofthe neutron di�usion equation 
an be solved for the 
ase where its �rst derivativeis zero and both the delayed pre
ursor 
on
entrations as well as the �ux levels aresolved for so that they balan
e the low power sour
e neutrons. This provides theinitial 
ondition for the transient 
al
ulation.Transient neutron di�usion equations in
luding pre
ursor terms and 
onstant sour
e
1

vg

∂φg

∂t
= ▽·Dg▽φg−ΣRgφg +

G∑

g′=1

ΣSg′gφg′ +fcal ·(1−β)χg

G∑

g′=1

νΣfg′φg′ +χD
g

6∑

i=1

λiCi+Sg (5.2)
∂Ci

∂t
= λi + fcal · βi

G∑

g′=1

νΣfg′φi (5.3)Steady state neutron di�usion equations
0 = ▽ · Dg ▽ φg − ΣRgφg +

G∑

g′=1

ΣSg′gφg′ + fcal · (1 − β)χg

G∑

g′=1

νΣfg′φg′ + χD
g

6∑

i=1

λiCi + Sg (5.4)
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0 = λi + fcal · βi

G∑

g′=1

νΣfg′φi (5.5)For an arbitrary low power sour
e the ion 
hamber 
an be adjusted so that itprodu
es a desired reading for the steady state sub-
riti
al 
ase. This is not the sameas the eigenvalue steady state problem sin
e pre
ursor densities are in
luded in this
omputation and the eigenvalue problem makes no assumptions about a 
onstantsour
e, it rather only examines the rea
tor's multipli
ation rate. The overall problem
alibration is not very sensitive to the initial power, as will be dis
ussed later.The most important 
alibration point for the transient 
al
ulation is the adjust-ment of the rea
tor period, or rate of 
hange for the 
ase where the fuel assembly isfully inserted. Relying on the rea
tivity 
alibrations performed for the steady state
ase gives a �rst order approximation of the 
orre
t 
alibration for the transient 
ase.When the fuel assembly is inserted 
ompletely, it is estimated that ρ3 is between.0075 and .012. The pre
ise amount of ex
ess rea
tivity in the 
ore for the 
ase wherethe fuel assembly is fully inserted is quite di�
ult to 
ompute, and is one of the keyunknowns in the simulation.The inhour equation is derived from a point kineti
s model and expresses therelationship between the various de
ay 
onstants whi
h o

ur as part of the delayedpre
ursor model and 
ore rea
tivity, or rate of 
hange of power. A dis
ussion ofthis equation and its asso
iated 
onstants goes somewhat outside the s
ope of this
hapter, the interested reader will �nd a 
omplete presentation in [53℄. This equation
an be used to derive a relationship between rea
tor period and ex
ess rea
tivity. Thisrelationship is plotted in Figure 5.2. It 
an be seen that the rea
tor period varies quite3The symbol ρ signi�es rea
tivity, de�ned as ρ = (keff − 1)/keff . The estimate for the rangeof ρ is based 
onversations with Simon Day and notes from Wm. J. Garland's original estimates ofrea
tor period for this event. A broad range was 
hosen to 
apture the most likely extremes for thisparti
ular event. 179
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hanges less rapidly.
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Figure 5.2: Inhour Equation SolutionFor short periods the rea
tivity depends heavily on the neutron lifetime within therea
tor. Neutron lifetime is di�
ult to measure and varies depending on the rea
tortype. Several estimates of neutron lifetime were used, an estimate in the range of48ms to 55ms was re
ommended by Simon Day. Rea
tor period is only dependenton neutron lifetime for the 
ase where the period is very short. This adds to theun
ertainty in the 
alibration of the model.The main purpose of examining the plot in Figure 5.2 is to formulate an estimate ofthe range of rea
tor periods whi
h 
an reasonably be asso
iated with the super
riti
al
ore. The transient algorithm is run and f
al is adjusted until the rea
tor periodmat
hes the estimate taken from the inhour equation. The 
ontrol rods are fullywithdrawn in this 
ase and the model is allowed to undergo an un
ontrolled ex
ursionfor the purposes of a

urately estimating the period by measuring the in
rease in180
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tor power for ea
h time step. The transient model is exe
uted for a long enoughperiod that the delayed pre
ursors have a su�
ient amount of time to stabilize.The di�eren
e between the values 
omputed for f
al in the steady state 
ase andthe transient 
ase is marginal, but important. Usually a shift of less than 0.05%in keff is required to 
orre
t the transient model. This 
orre
tion represents thene
essary modi�
ations to the equations whi
h are brought into play by the set ofdelayed pre
ursor 
onstants.5.1.3 Numeri
al Simulation ParametersIn any simulation study the goal is typi
ally to a
hieve an a

eptable level of pre
isionwith a minimal amount of e�ort. E�ort in this 
ase 
an be quanti�ed as either theamount of time required for a given simulation to exe
ute, or 
an be measured asthe di�
ulty of the implementation of the simulation. Some errors may be tolerated,others may not be. Simulation parameters whi
h 
an be adjusted that have an impa
ton the exe
ution speed of the model as well as an impa
t on the pre
ision of the modelare:
• The geometri
 mesh density
• The number of energy groups modeled
• The order of the time integration
• The step size used for time integrationHigher order approximations to spatial derivatives are not implemented by the MOOSEfor a variety of reasons, partly be
ause they 
ompli
ate the inter-mesh 
onne
tionstrategies. The MOOSE uses se
ond order estimates of spatial derivatives.181
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rease dramati
ally with denser meshes, so only a few di�erentmesh densities are studied. Some solutions are presented with regional mesh re�ne-ments. In parti
ular regional re�nement is helpful near material dis
ontinuities, andnear leading and trailing regions of motion.The time integration problem is inherently sti� due to the broad range of time
onstants that must be modeled. The sti�ness of the problem suggests that a higherorder integration method may be ne
essary. To minimize stability problems asso
iatedwith the CFL 
ondition an impli
it third order multi-value time integration methodis used.A variety of step sizes were experimented with. Choosing a small step size for thetime integration routine provides better pre
ision at the 
ost of taking more steps.This relationship is investigated in more detail later in this 
hapter.In the following se
tions ea
h of these parameters will be adjusted in the attemptto realize the most pre
ise simulation setup for the problem at hand.5.1.4 Physi
al Simulation ParametersWhile 
ertain parameters of the fuel insertion problem were measurable, other pa-rameters are not well known. At the M
Master Nu
lear rea
tor fuel assemblies areinserted by hand. An operator stands on the bridge whi
h is suspended above the
ore and uses a long hook to insert fuel assemblies. The insertion time in the in
identreport is spe
i�ed as 20 se
onds, however sin
e this is not a me
hani
ally 
ontrolledpro
ess it may be subje
t to a 
ertain amount of variation.The initial �ux of the rea
tor 
ore is extremely low, and is not a
tually measurable.In prin
iple the sub-
riti
al power of the 
ore 
an be measured by 
omparing thedi�eren
e of the water inlet and outlet temperatures although if the 
ore has been182
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iently long time this di�eren
e may be too small to measurewith any a

ura
y. Sub-
riti
al 
ore heat is produ
ed by a variety of pro
esses, andwill not ne
essarily be the result of nu
lear pro
esses whi
h produ
e neutrons. Thenumber of �ssioning neutrons present in the 
ore 
an be estimated by examining thedensity of 
ertain spontaneously �ssioning fuel by-produ
ts, in parti
ular Pu240 isrelevant. Spontaneous �ssion rates for two main �ssion byprodu
ts are
• Pu240 1.5e+3 n/(gram*s)
• U238 .018e+3 n/(grams*s)A 30% burned up HEU fuel assembly will have a ratio of 238U to 240Pu of approxi-mately 500 to 1 [89℄, or roughly .016 grams of Pu240 / assembly. Other sub-
riti
alneutron sour
es also exist in
luding neutrons whi
h result from the 
ollision of gammarays and heavy water, although in the MNR the proportion of heavy water in the
oolant is very small. The MNR also has a beryllium assembly whi
h 
an be a
ti-vated with a gamma sour
e to produ
e neutrons. The sub-
riti
al neutron sour
e isdi�
ult to quantify with any degree of pre
ision given the variety of pro
esses in-volved and the di�
ulty in measuring them empiri
ally. Its impa
t on the transientsimulation will be investigated later in this 
hapter.The M
Master nu
lear rea
tor has a variety of demands pla
ed on it to maximize�ux at various regions within the 
ore for users of radiation sites and beam ports.Consequently the fuel loading patterns are adjusted regularly to try to meet theneeds of various resear
hers. The fuel loading pattern is therefore a 
omplex historyproblem, and no attempt has been made to represent partial assembly burn-up in thisstudy other than an overall 
ore burn-up of around 25%.The Ion 
hamber whi
h signals the high power trip in
urs a delay between themeasurement of high power and the physi
al release of the shut down rods of about183
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utting o� the 
urrent to the ele
tri
magnets whi
h hold them in pla
e above the 
ore. In addition to delays in
urred by thethe ion 
hamber's 
ontrol 
ir
uitry some time is required for the residual magnetismin the 
oils whi
h support the magnets to dissipate. Sin
e in this experiment the 
oreis in a super-
riti
al state with a very short period at the instant that the 
ore rea
hesits maximum power even a small variation in the pre
ise value of this delay may havea large impa
t on the maximum power a
hieved by the the 
ore.The power whi
h the ion 
hamber measures is not pre
isely proportional to themaximum power of the 
ore during the 
ourse of the ex
ursion. Given the presen
e ofthe delayed pre
ursors and the various e�e
ts of multiple energy groups as part of thetransient multi-dimensional study the shape of the �ux pro�le at sub-
riti
al powerwill not be the same as the shape of the �ux pro�le at maximum power. This suggestthat the position of the Ion 
hamber as modeled in the two dimensional study mayhave some impa
t on the a

ura
y of the study as well.The ion 
hamber itself is modeled rather simply. For dis
ussion of radiation de-te
tion instruments see [73, 103℄. Without delving too deeply into the physi
s of howsu
h sensors work the assumption is made that the ion 
hamber generates a DC signalproportionate to the number of ion pairs generated at any given instant from 
ollisionwith high energy parti
les. The generation of a single ion pair is understood to bethe result of a 
olliding parti
le loosing about 30-35 eV. For purposes of simulationan estimate of the total energy of all radioa
tive parti
les in a 
ell is 
omputed bytaking an average a
ross ea
h �ux group with an average energy level of at least 30eV, weighted by the average energy of that group.To satisfy safety regulations the shim rods must be fully inserted within 500ms.This 
orresponds to about 1/2 the a

eleration due to gravity, the redu
tion in rateis 
aused by the water in the 
ore. 184
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al and Computer Engineering5.1.5 The Simulation GeometryThe simulation was built on a grid with dimensions 41 x 40 
ells, the rea
tor 
oreused 19x15 
ells, the remaining 
ells representing the moderator. The fuel within the
ore o

upied a physi
al spa
e of approximately 60 
m in height, 45 
m in length,and 56 
m in width. For the two-dimensional representation a 60 
m height was usedwith a 48 
m width. This gave a 
ell dimension of 2.5 
m wide by 4 
m long.
core4core2

ctrl1 ctrl2

core3core1

fuel1

Figure 5.3: Re�ned Mesh Showing Top of CoreFigure 5.3 shows a portion of the geometry whi
h fo
uses on the top of the 
oreand labels ea
h of the main regions. The shim rods were positioned so that whenfuel1 was fully inserted they divided the 
ore into 3 roughly equal segments, of width5 
ells for 
ore1, 7 
ells for 
ore2 + fuel1 + 
ore3, and 5 
ells for 
ore4.The model was run at several di�erent resolutions. In the default resolution the
ore was represented by 15x19 
ells within a simulation region of 41x40 
ells. Higherresolutions whi
h were tested in
lude 82x80 
ells, 164x160 
ells, 246x240 
ells and328x320 
ells for the most re�ned tests.For the 
onservation tests several mesh re�nements were applied. The regions
ore2 and 
ore3 were further subdivided so that the 
ells immediately to the left and185
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ould be re�ned in the Y dire
tion as shown in Figure 5.3. All the
ells in fuel1 were similarly re�ned, with the added feature that the tips of fuel1 weredivided into 3 parts instead of just two. The 
oarsest mesh dimensions are 41x40 
ellsa total of 1640 geometri
 positions used by the volume weighted tests. Under there�ned mesh strategy they are 38x40+3x80+4 for a total of 1764 
ells in the 
oarsestgeometry, an in
rease of less than 10%.5.2 Steady State Simulation ResultsThe steady state simulations presented in this se
tion fo
us on examining the rea
tiv-ity 
hanges in the 
ore whi
h result from small adjustments in the position of the fuelrod. These simulation studies e�e
tively 
ompute global rate of 
hange of rea
tivity inthe 
ore whi
h is 
hara
terized by the inverse of the �rst eigenvalue. These simulationstudies 
ompute the �rst derivative of the power 
urve or the instantaneous neutronmultipli
ation rate of the 
ore whi
h does not 
onsider the delayed pre
ursors andwhi
h would result from the tested fuel assembly insertion level.Several issues are addressed in this se
tion. Although by default the simulation is
alibrated at several extreme points there will still be several measurable variationswhi
h o

ur in between those points, it is the obje
t of this se
tion to use thesevariations to argue for the relative merits of various simulation methods. A two groupsimulation is used to 
ondu
t this part of the study. 4 di�erent mesh re�nements are
ompared, ea
h is twi
e as dense as its prede
essor.The experiments in the following se
tions were designed to evaluate the merits ofthe 
onservation methods. Results 
omputed with moving 
onservative meshes are
ompared with motion modeled using a simple volume weighted te
hnique. Volumeweighted methods are often used as a referen
e point due to their simpli
ity of im-186
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ells with averaged di�usion values. This methodology usually demonstratesunsatisfa
tory results for large mesh spa
ing, however the method is simple, it makessense in an intuitive way and it does not require any advan
ed mesh te
hniques.5.2.1 Geometri
 Re�nement StudyThe mesh densities, in
luding both the 
ore and the surrounding moderator are
• 41x40
• 82x80
• 164x160
• 328x320The simulation runs were done using two energy group divisions. For this portionof the study rea
tivity was only measured for fully aligned 
ell positions for ea
h ofthe meshes in question. The most demanding geometry at 328x320 
ells 
onsumed
lose to the total amount of memory on the available hardware (about 1 Gigabyte)so this is the last re�nement that was attempted and it was only 
omputed for thereferen
e 
ase where assembly positions are aligned with the mesh. The rea
tivity
urve 
omputed at 328x320 
ells is plotted in Figure 5.4. For this plot rea
tivityin
reases as the insertion distan
e approa
hes zero. The rest of this 
hapter willuse the 
onvention that negative insertion distan
es mean that the rod, either fuelor 
ontrol, is withdrawn. A rea
tivity greater than one indi
ates that the rea
torpower is in
reasing, a rea
tivity of less than one indi
ates that the rea
tor power isde
reasing. 187
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e the rea
tivity 
urves for ea
h mesh di�er by only very small amounts, ratherthan plotting the 
urves themselves, the di�eren
e between the 
urves are plotted.Figure 5.5 shows the di�eren
e between rea
tivity measurements 
omputed at threedi�erent resolutions subtra
ted from the 
urve 
omputed at the highest resolution.This plot gives an indi
ation of what errors 
an be attributed to the mesh, and whaterrors may arise from other sour
es.The next sequen
e of tests 
ompares two te
hniques for approximating motion ofthe fuel assembly labeled fuel1 in Figure 5.3. These tests measure the sequen
e ofinstantaneous rea
tivities for a 
ontinuous sequen
e of fuel assembly positions. The�rst te
hnique, labeled as 
onservation in the graphs, uses the re�ned mesh illustratedin Figure 5.3, and is based on the methodology des
ribed in Chapter 3. The se
ondte
hnique, labeled volume weighted in the graphs, uses a standard Cartesian meshthe simple method of averaging 
ell 
onstants to approximate fuel assembly positionswhi
h 
annot be a

urately represented on the mesh. Rea
tivity 
urves for the 
oarsestmesh are plotted in Figure 5.6.Error estimates were 
omputed by taking the di�eren
e between the 
omputedsolution at arbitrary positions with an interpolated solution, where only mesh aligned
al
ulations were used, and a fourth order interpolation fun
tion was used to estimatean ideal solution. This error estimation method makes the assumption that the �rstderivative of the rea
tivity 
urve should be 
ontinuous. Any smooth interpolation oftrusted points should provide a good estimate of the rea
tivity 
urve, although this isnot the same as an exa
t solution sin
e it 
hanges depending on the mesh resolution.The di�eren
es for ideal solutions of various resolutions are illustrated in Figure 5.5.Unusual 
usping in the 
urve or sharp irregular 
hanges in the 
urve's dire
tion areassumed to be the results of numeri
al errors rather than physi
al artifa
ts.189
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tivity errors for 2 resolutions under the 
onservation methodol-ogy are plotted in Figure 5.7. These errors are 
al
ulated as the absolute di�eren
ebetween the ideal rea
tivity solution and the 
omputed solution. Ea
h 
usp repre-sents the motion of the fuel assembly from one 
ell boundary to the next, so there are
orrespondingly 4 times as many 
usps in the 164x160 resolution plot. Errors tend tobe largest at the beginning of the insertion and at the end of the insertion. When thetip of the fuel assembly is 
losely aligned with either edge of the 
ore this 
reates ade
ision 
on�i
t for the 
onservation algorithm sin
e it must deal with material dis-
ontinuities on either side of a mesh boundary. As would be expe
ted, with redu
ed
ell size a redu
tion in error is also observed.
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tivity errors for 2 resolutions under the standard 
ell 
onstantmixture s
heme are plotted in Figure 5.8. These errors are 
omputed in the same wayas those presented in Figure 5.7. This 
urve has some features that are similar to those191
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onservation plots, ea
h 
usp represents the motionof the fuel assembly from one 
ell boundary to the next, so they are 
orrespondingly4 times as many 
usps in the 164x160 resolution plot. The 
onservation geometryuses additional lo
alized re�nements so few and more regular 
usps are evident in theremixed plots.Both the volume weighted method and the 
onservation method have di�
ultyestimating rea
tivity in the middle of the 
ore. This 
an be explained by observingthat the rate of 
hange of rea
tivity, as illustrated in Figure 5.4 is greatest when thefuel assembly is 1/2 way inserted. The relative error plots for the volume weightedmethod tend to be simpler 
urves with smoother shapes than those generated by the
onservation method. This is due to the more obvious implementation of the volumeweighted method. Ea
h spike and unusual deviation in the 
onservation errors usuallyindi
ates the appli
ation of one of the various rules involved in the methodology.Errors were measured using a 2 norm 
omputed as
√√√√

max∑

i

Abs (Ideali −Measuredi)
2 · (xi − xi−1) (5.6)The results are summarized in Table 5.3. In ea
h 
ase the 
onservation methodsshow a signi�
ant redu
tion in error over the volume weighted strategy. Errors forea
h mesh, as measured with the two norm are redu
ed by a fa
tor of 10 when volumeweighted te
hniques are 
ompared against 
onservative moving meshes. While anerror redu
tion of about 1/4 would normally be expe
ted for a mesh doubling studythe idealized solution in this 
ase is not the same as an exa
t solution, and so theprin
iples des
ribed in the previous 
hapter regarding observed orders of a

ura
y donot apply.
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al and Computer EngineeringMesh Eigenvalue Conservation Volume WeightedDensity Estimates Error Error41x40 300 .0557 .8082x80 600 .030 .44164x160 1200 .017 .22Table 5.3: 2 Norm Error SummariesA variety of tests were performed. In
reasing the energy group division did notseem to have any impa
t on the size of the 
usps for either the 
onservation methodor the volume weighted method. Simulation models for 2, 4, 8 and 12 energy groupsall demonstrated similar error patterns.5.2.2 Energy Group StudyWhile geometri
 re�nement is understood to have a 
lear impa
t on pre
ision it is notas 
lear whether a more re�ned energy group stru
ture would also lead to di�eren
esor unusual pe
uliarities for either the 
onservation methods or the remix methods.The same experiment whi
h 
ompares the integrated error di�eren
e for the 
onser-vation rea
tivity estimation method with the volume weighted method was performedfor various energy group divisions. As dis
ussed in the se
tion on approximations thegroup 
ollapsing pro
edure does not produ
e ideal results. A 5%-10% di�eren
e in
ore burn-up was required to 
alibrate the models whi
h is also re�e
ted in the mea-surement of 2 norm errors for various energy division. The errors for the 12 energygroup model are plotted in Figure 5.9. This plot shows the di�eren
e between theerrors generated by the remix method versus the errors generated by the 
onservationmethod. These errors are typi
al a
ross all energy groups. The 
onservation modelhas twi
e as many humps as the remix model be
ause it uses a lo
alized geometri
re�nement although the total number of variables a
ross the mesh is almost the same.193
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Figure 5.9: 12 Group Rea
tivity Errors5.2.3 Performan
e StudyStri
tly speaking the exe
ution speed of the MOOSE frame work is determined bythe implementation of its solvers, and as su
h is not a
tually at issue for this thesis,some summary performan
e data for parallel solution times is presented.Jose Roman, one of the main SLEP
 authors who provided assistan
e in �ne tuningthe eigensolver, reported the following parallel exe
ution times for the 164x160 meshand the 320x328 problem under the 8 group 
ase in Table 5.4. For his tests, thefollowing 
omputing platform was used: a 
luster of 20 nodes with dual Pentium 2Ghz Xeon pro
essors with 1 Gbyte of memory per node, inter
onne
ted with a high-speed SCI network with 2-D torus topology. These performan
e results were derivedas part of the development of an arti
le whi
h dis
usses the MOOSE framework andits performan
e 
apabilities when solving matri
es using SLEP
. At this writing, thearti
le is under review. 194
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=1 pro
=2 pro
=4 pro
=8 pro
=16Dim Dim Non-Zeros se
s se
s se
s se
s se
s164x160 260,064 2,929,008 93.99 57.51 30.79 24.67 15.91328x320 971,296 11,230,176 502.61 373.56 160.68 85.15 �Table 5.4: Parallel Exe
ution Times in Se
onds for 8 Group ProblemThese tests mainly illustrate the parallel s
alability of the eigensolver library to 8and 16 nodes. A full investigation into the performan
e of numeri
al solvers and thedetails behind a parallel solution strategy goes beyond the s
ope of this thesis. Thisinformation is reprodu
ed here only to give a rough indi
ation of SLEP
's 
apa
ities.5.3 Transient Simulation TestsThe steady state simulation tests have a variety of 
alibration points whi
h allowtheir values to be �xed at 
ertain extremes. Con�den
e in the results derived inthis se
tion is based on the 
on�den
e that 
an be derived from the steady statesimulations. The transient simulation in
ludes several additional terms, not relevantto the steady state model, whi
h represent the delayed pre
ursors. As dis
ussed inthe se
tion on 
alibration, the inhour equation was used to double 
he
k the transientmodel and ensure that the simulated period 
orre
tly 
orresponded with the model'sex
ess rea
tivity.This se
tion assumes several default simulation parameters whi
h remain �xed,unless otherwise noted
• un
ontrolled minimum rea
tor period = 25ms
• maximum power trip = 2500 KW, as measured at ion 
hamber lo
ation
• maximum power is taken a
ross entire 
ore, not ne
essarily same as ion 
hamber195
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• sub
riti
al power = 100 mW
• fuel assembly insertion speed = 3
m/se

• shutdown rods drop at 1/2 a

eleration due to gravity
• 50 ms delay between maximum power measured and fuel assembly release
• 4 energy groups
• ion 
hamber power is measured from the fastest energy group
• power step size ratio = 0.925
• 
onservative meshOne of the major di�
ulties in presenting any transient results whi
h attempt toreprodu
e the 1994 rea
tivity insertion in
ident is that the pre
ise rea
tivity for thefully inserted fuel assembly is not known. While the previous se
tion dis
ussed whatmay seem to be very small di�eren
es in eigenvalues, this se
tion will make it 
learwhat impa
t su
h small di�eren
es 
an have.This 
hapter uses a generous breadth in estimating the maximum rea
tivity thatthe MNR 
ore 
ould have rea
hed. As a preliminary study the maximum ex
essrea
tivity is used as a 
alibration point for the 
al
ulation of the maximum power, asdis
ussed on the se
tion on 
alibration. The suggested un
ertainty in the estimation ofthe fuel assembly worth of +/- 1.5 mk translates into an un
ertainty in the maximumpower of about +/- 20%. Given the results in Table 5.5, all models in this se
tion willuse an ex
ess rea
tivity of 9 mk as their 
alibration point, and will assume an errorof +/- 30%. Narrowing this estimate is outside the s
ope of this thesis and is moreproperly studied as a physi
s problem. 196
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ess Rea
tivity ρ (mk) 7.5 8.5 9 9.5 10.5Un
ontrolled Minimum Period (ms) 50 30 25 21 15Maximum Simulated Power (MW) 5.7 7.6 8.7 9.8 12.1Table 5.5: Maximum Rea
tivity vs. Maximum PowerPrevious studies whi
h estimate the transient behaviour of the 
ore under similar
ir
umstan
e were 
omputed at a lower resolution using point kineti
s models thanthe estimates 
omputed in this 
hapter. On the one hand this makes the results pre-sented in this se
tion entirely novel, be
ause no similar results for the MNR have been
omputed to the same degree of resolution. On the other hand, the results presentedin this se
tion 
annot be 
learly validated against any existing measurements or other
omparable simulations.One of the most 
ommonly 
ited failures of simulation studies is that they oftendo not in
lude su�
ient eviden
e of their validity or a

ura
y. It is believed thatthe material presented in this 
hapter whi
h analyzes errors for the steady state 
asewhen 
ombined with the more general dis
ussion in the previous 
hapter on validationprovide a su�
ient degree of 
redibility to establish the 
on
lusions drawn at theend of the 
hapter. The broad error range that this 
hapter assumes must also betaken into a

ount. It is important to point out that the purpose in studying therea
tivity ex
ursion in
ident is primarily to 
al
ulate the order of magnitude of thepower maximum. Di�eren
es between results of +/- 10% are not important, ratherwhat is at stake is whether the instantaneous power is 2 times, 5 times, or 50 timesthe a

eptable limit for the 
ore. Given that the rea
tor 
ore's instantaneous powerre
order ex
eeded its s
ale of 6MW for a brief, but signi�
ant period of time, theserough guesses are within the range of possibility.Figure 5.10 shows the di�eren
e between two rea
tivity 
urves 
omputed with theMOOSE, one using 
onservation te
hniques the other using 
onstants weighted by197
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al and Computer Engineeringvolume to represent tip motion. The volume weighted plot shows many unnaturalspikes and dips whi
h are 
learly the result of numeri
al artifa
ts and have no bearingon the a
tual simulation. The maximum power derived using both methods is similar,although the time at whi
h the peaks o

ur is di�erent. The maximum power is largelydetermined by the segment of the 
urve whi
h immediately follows the 2.5MW point,and so in some respe
ts this metri
 forgives the volume weighted method for itsearlier mistakes. The dropping of the shut down rods brings a rather abrupt halt tothe ex
ursion. Time (s) 8 12 13 14 15 16 17Volume Weighted Power (W) .27 .53 .73 1.2 3.9 24 520Conservative Power (W) .28 .59 1.0 2.2 7.8 120 29000Table 5.6: Sele
ted Power Levels Prior to Control Rod DropTable 5.6 
ompares the 
omputed power levels shortly before the 
ontrol rods drop.At 8 se
onds the two methods approximately agree, di�ering by less than 5% in theirestimate of the power level. At 17 se
onds the two methods di�er in their estimate ofmaximum power by a fa
tor of 50. This sudden 
hange illustrates the impa
t that anerror of 1 or 2 mk 
an have on a rea
tivity 
al
ulation and is the prin
iple argumentin favour of using the 
onservative mesh strategy.The remainder of this 
hapter will fo
us on simulation results derived using theMOOSE's 
onservation methodology on a 
oarse 41x40 mesh. The volume weightedstrategy will not be investigated any further.One of the main 
on
erns addressed by the original te
h report whi
h dis
ussedthe refueling in
ident was whether or not the rea
tor 
ladding a
tually melted. Forthe 
ladding to melt the 
ore power needed to rea
h a peek high enough for longenough to raise the temperature of the fuel 
ladding to a value above the melting198
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Figure 5.10: Di�eren
es Between Conservation and Volume Weighted Methodspoint for aluminum, whi
h is around 650 degrees Celsius. The tests performed in thisse
tion investigate the maximum instantaneous power rea
hed by the rea
tor at twolo
ations. The �rst lo
ation is that measured by the ion 
hamber. The se
ond islo
ation roughly near the 
enter of the 
ore and is a measure of the maximum powerrea
hed. Previous point kineti
 simulations were not able to make this kind of spatialdistin
tion in the lo
ation of various power measurements in the MNR 
ore. Thisinvestigation will not attempt to model the temperature of the fuel plates.While more in depth models are within the 
apability of the MOOSE's framework,the s
ope of this thesis 
annot in
lude all possible avenues of investigation. Theanalysis of the rea
tivity power as an instantaneous fun
tion of the time dependentneutron di�usion equation 
ombined with the delayed pre
ursors presents a su�
ientlyri
h avenue for investigation, and this se
tion will limit its investigation to the studyof a handful of parameters whi
h in�uen
e the 
ore's power peak.199
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h will e�e
t the model setup in
lude the step size ratio, the ion
hamber delay, and the fuel assembly insertion time.5.3.1 Time Based Integration Method Sele
tionAt the beginning of any given transient run the exa
t point at whi
h the power peako

urs 
annot be known, �nding this point is rather the purpose of the simulation.The integration algorithm must support a variable step size to 
apture the rapidly
hanging behaviour whi
h o

urs at the instant that the power rea
hes its maximum.While multi-step predi
tor 
orre
tor algorithms were experimented with, the inabilityof these methods to easily adjust their step size made them unusable. The transientneutron di�usion problem must represent neutrons whi
h travel at a wide variety ofvelo
ities. As dis
ussed in 
hapter 2 this results in an extremely sti� problem. Se
ondorder trapezoid methods were experimented with, and although they were reasonablya

urate and simple to program they often failed to remain stable throughout theduration of the simulated run. Modeling the wide variety of neutron speeds whilestill being able to take steps large enough to allow the simulation to progress at areasonable rate requires the use of multi-value methods. Multi-value methods are verya

urate, allow their step size to be 
hanged during the 
ourse of exe
ution, and forsome variations also have very good stability properties . All of the transient plots inthis 
hapter were 
omputed with a 3rd order multi-value integration method.In the region of the fuel rea
tivity peak the neutron di�usion power fun
tionbehaves very mu
h like an exponential 
urve. The rate at whi
h the 
urve in
reasesis approximated by the ratio of 
onse
utive power measurements taken at the ion
hamber. The transient algorithm 
hooses its step size by attempting to keep thisratio 
onstant. At ea
h iteration of the algorithm a step is tentatively taken. If the200
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al and Computer Engineeringratio of the new power level to the old power level is less than the a

epted threshold,the new 
al
ulation is kept, and the step size is in
reased. If the new step results in apower ratio whi
h is outside the a

epted range the step is then reje
ted, the step sizeis redu
ed, and a new step is 
al
ulated. Many steps in sequen
e may be reje
ted whilethe algorithm sear
hes for an appropriately small step to take. To avoid 
hanging stepsize at every single stage in the algorithm a small range is maintained between thelower and upper a

eptable step ratios. Additional step size 
onstraints are imposedwhen the rea
tor power gets very 
lose to 2500KW. If the simulation measures a 
orepower greater than 2500KW it 
he
ks the size of the previous measurement. If theprevious measurement was less than 2490KW the 
urrent step is reje
ted and the stepsize is redu
ed. This ensures that no matter how large a step the algorithm takes itwill 
hoose a time index appropriately 
lose to the a
tual instant that the 
ore goesoverpower, usually within about +/- 5KW of 2500KW.5.3.2 Step SizeThe �rst question whi
h must be addressed after an integration method has beensele
ted is the 
hoi
e of step size. A sequen
e of two group transient simulations wererun whi
h used a variety of ratios between the step sizes ranging from 0.5 to 0.95. Anideal step size should be large enough to minimize exe
ution time, but small enoughto preserve a reasonable amount of a

ura
y. The measured power maximum for ea
hstep size is reported in Table 5.7. The power ex
ursion for two step sizes is plottedin Figure 5.11 on a logarithmi
 s
ale for the period immediately before and after thepeak power was rea
hed. The 0.70 step is plotted with individual points to give anindi
ation of how the step size was adjusted.Neither 
urve plotted in Figure 5.11 is perfe
tly smooth. The small perturbations201
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al and Computer EngineeringStep Size Ratio .5 .7 .80 .85 .875 .90 .925 .94 .95Power Peak (MW) 8.90 9.13 8.80 8.60 8.77 8.69 8.66 8.61 8.57Steps taken 140 195 268 337 398 483 628 754 924Table 5.7: Transient Step Size Sele
tion
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Figure 5.11: Transient Rea
tivity Ex
ursionsin the plot are easily attributed to the approximate nature of the rea
tivity estimationsbetween grid points. The plot generated based on the .70 step ratio separates thepoints su�
iently that it provides a sense of how the algorithm adjusts step size. Byinspe
ting this plot around time index 17.5 se
onds the point at whi
h the step size isredu
ed to 
apture the instant that the power goes above 2500KW 
an be observed.Changing the step size has some impa
t on pre
isely whi
h points are used duringthe ex
ursion. One would expe
t that by in
reasing the number of steps taken by thealgorithm the power peak might shift in a 
onsistent way either with an in
reasingtrend or with a de
reasing trend. The data 
olle
ted in Table 5.7 tends to indi
ate202
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al and Computer Engineeringthat using a step size ratio of 0.925 gives a result a

urate within 1% of the estimatebased on the .95 ratio whi
h uses 50% more points. Based on this data the remainingtests in this 
hapter will use a step size ratio of 0.925.5.3.3 Number of Energy GroupsUsing the step size estimated in the previous se
tion three separate simulation runsusing various energy group divisions measured the peak power for the 
ore. The 2group model was not used for transient tests be
ause for very short rea
tor periodsit exhibited behaviour quite di�erent from the other three models. In addition tothe peak power the measurement re
orded at the ion 
hamber as well as the timeof the peak are also re
orded. In
reasing the number of energy group divisions usedby the problem tends to 
hange the shape that the �ux takes. All the ion 
hambermeasurements are taken from the �rst group in ea
h 
ase. The �rst group measuresthe neutron �ux with energies that range from 8.21e+5 eV to 1e+7 eV and is thesame for ea
h simulation. Although no appre
iable di�eren
es were noti
ed betweenthe behaviour of simulations with di�erent number of energy divisions for the steadystate 
ase, for the transient 
ase the �ux shape of the highest group is slightly di�erentfor ea
h model. The 4 group or 8 group models are both good 
andidates for morepre
ise measurement studies given their reasonable running times. The 12 groupmodel exe
utes quite slowly relative to the others and while it may present informationwith the highest a

ura
y the long exe
ution times required make it desirable to limitfurther study to the 4 and 8 group models.
203
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al and Computer EngineeringEnergy Groups 4 8 12Peak Power (Kw) 8660 8660 8650Ion Chamber Peak (Kw) 6600 7080 7200Time of Peak 17.6 16.8 17.0Table 5.8: Peak Power by Energy Division5.3.4 Ion Chamber DelayThe time delay between when the parti
les in the ion 
hamber are a
tivated by highlevels of radiation and the time when the shim rods are released is reported to be25ms in the MNR safety report. Given that the rea
tor period is so short at theinstant that this o

urs there is some 
on
ern that if this delay were very mu
h longerthat the rea
tor might rea
h a mu
h higher peak power. This value is di�
ult tomeasure and it 
ould in fa
t be smaller or larger than the reported value. The resultsin Table 5.9 show that for small variations around the estimated value of 25ms nomore than a 10% shift in the peak power takes pla
e. Very long ion 
hamber delays,on the order of several times the rea
tor's minimum period are required before thePeak Power 
hanges in a drasti
 way. 50 ms is a relatively 
onservative estimate ofthe ion 
hamber delay. It is likely 
loser to 25 ms.The model presented in this 
hapter is able to 
ompute the di�eren
e in powermeasured at the lo
ation of the ion 
hamber and the absolute maximum of the 
ore.In steady state these two values agree, but during the ex
ursion the shape of the
ore 
hanges slightly and the �ux at the 
enter of the 
ore in
reases at a faster ratethan the �ux at the edge of the 
ore. This phenomena is marginal, the di�eren
e inthe shape of the 
ore only a

ounts for the interior of the 
ore being about 25%-30%higher in power than the power measured at the ion 
hamber.
204
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al and Computer EngineeringDelay (ms) 15 20 25 30 40 50 60 75 100 150Peak (MW) 5.9 6.2 6.4 6.8 7.6 8.7 9.3 11.0 14.8 27.3Table 5.9: Peak Power vs. Ion Chamber Delay5.3.5 Sub-
riti
al PowerAs already dis
ussed the sub-
riti
al �ux is di�
ult to estimate and impossible tomeasure, espe
ially if it is assumed that the 
ore has not been operational for a week ormore. Sin
e the transient neutron di�usion problem exhibits exponential behavioursit is reasonable to ask what impa
t the initial point has on the performan
e of theproblem. Given the already established parameters a 
olle
tion of 4 group simulationmodels were run ea
h using a di�erent sub-
riti
al power in the range of 1 watt and1e-6 watts. Redu
tions in the starting power e�e
tively allows the fuel assembly to beinserted further into the 
ore before the 2.5 MW trip point is rea
hed. Extra insertiondistan
e means that some additional rea
tivity has been added by the time that the
ore is at the 2.5 MW point. The simulation is somewhat insensitive to this fa
tor, ittakes a redu
tion of a fa
tor of 106 in the initial 
ore power to in
rease the maximum
ore power by a fa
tor of 2.Sub-
riti
al Power (W) 1 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6Peak Power (MW) 8.2 8.6 10.6 12.5 12.7 14.4 17.7Time Peak O

urs 17.37 17.61 17.82 18.01 18.18 18.35 18.51Table 5.10: Peak Power vs. Sub-
riti
al Power5.3.6 Rod Insertion SpeedFuel assemblies are inserted by an operator who stands on the bridge over the 
ore atthe MNR. The pro
ess is not automated in any way but is left to the dis
retion and205
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al and Computer Engineeringexperien
e of the operator. The original estimate of a 20 se
ond insertion time is onlya best guess whi
h represents the typi
al a
tions of an operator. A range of insertionspeeds from 10
m/s (assuming that the assembly was a

identally dropped at somepoint) to .5 
m/s is used . The di�eren
es between these trials are listed in Table5.11. Sin
e the a
tual insertion is done by hand the speed will not ne
essarily beuniform. The insertion speed of 3 
m/s, 
orresponding with a total insertion time of20 se
onds, is suggested as likely the fastest rate of insertion that would have o

urred.The simulation is relatively sensitive to insertion speeds, redu
ing the speed of thefuel assembly insertion tends to redu
e the maximum power a
hieved.Velo
ity (
m/s) 10 7.5 5 3 2 1 .5Peak (MW) 37.5 30.5 15.2 8.7 6.7 4.5 3.7Time (s) 5.98 7.7 11.0 17.7 25.6 48.98 93.7Table 5.11: Peak Power vs. Fuel Insertion Speed
5.4 Comparison with Garland's ReportThe original te
hni
al note [69℄ whi
h analyzed the instantaneous power level of theMNR was written by Wm. J. Garland in 1997. Garland's report des
ribes a zerodimensional point kineti
s model based on the same parameters des
ribed in this
hapter. He 
on
luded that the best estimate of peak power was approximately 8.4MW. In another internal do
ument he reports the results of a sensitivity study andadjusts a variety of parameters similar to the parameters examined in this 
hapterand 
on
ludes that 9.8MW is a reasonable maximum power. He used a linear rampto model the rea
tivity insertion. Garland's report also estimates the highest tem-peratures rea
hed by the 
ore. The transient simulation studies in this 
hapter haverestri
ted their fo
us to the instantaneous power level rea
hed by the 
ore and have206
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Master - Ele
tri
al and Computer Engineeringnot attempted to estimate a maximum temperature.This 
hapter has drawn approximately the same 
on
lusion as Garland's report,that the power ex
ursion that the MNR 
ore underwent was well within safety tol-eran
e. The di�eren
e in the various peak powers 
omputed in this 
hapter are notsigni�
antly di�erent from the peak 
omputed in Garland's report.The experiments undertaken in this 
hapter show that the shape of the 
ore �uxonly has a moderate impa
t on the simulation results. There is only a 25% di�eren
ebetween the power measured at the ion 
hamber and the power measured at the
enter of the rea
tor 
ore. This spatial di�eren
e is due to a small 
hange in shapeof the power pro�le during the 
ourse of the rea
tivity ex
ursion. This spatial e�e
tis not a

ounted for in Garland's point kineti
s model although it is not signi�
antenough to have a large impa
t on the maximum power estimate. Garland's reportused a linear ramp to model rea
tivity versus insertion distan
e. This 
hapter used afull two dimensional simulation to 
ompute rea
tivity, a de�nite S shaped 
urve waspresented in the �rst se
tion. While this 
hange in shape has some impa
t on theresults, it is not a large enough to 
learly a

ount for a major di�eren
e.The most important issue with respe
t to estimating the maximum height of theinstantaneous power during the ex
ursion appears to be tied to the pre
ise amountof ex
ess rea
tivity that was inserted into the 
ore. Other questions of importan
ein
lude the estimation of the initial power level, and the ion 
hamber delay. Theimpa
t of these se
ondary parameters are dire
tly linked to the estimate of ex
essrea
tivity inserted into the 
ore.Issues not 
onsidered in the original te
hni
al report but relevant to the develop-ment of this model in
lude the mesh density used, the energy group stru
ture used,and the intermediate 
ell approximation method used. Ea
h had a de�nitely mea-surable impa
t on the pre
ision and 
redibility of the result derived. In addition this207
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tri
al and Computer Engineeringstudy examined 
ertain physi
al quantities whi
h were 
onsidered to be unknowns,in
luding the fuel assembly insertion time, the sub-
riti
al power. The �nal estimatedpeak power of about between 8 MW and 12 MW, depending on various parame-ters, roughly agrees with the �gure 
omputed in the 1997 te
hni
al report and otherestimates reported by Garland.Interestingly the 
omparison of the di�erently shaped rea
tivity versus insertion
urves for the volume weighted 
ase and the 
onservation 
ase showed that the mostimportant part of this 
urve in determining the maximum power is its shape in the .5se
ond period immediately after the 
ore power ex
eeds 2.5 MW. A simulation whi
hestimates roughly the 
orre
t period for this segment of the rea
tivity 
urve should bein 
lose agreement with these results. Be
ause of the nature of the problem, wherebythe rea
tivity insertion begins at a time determined when the power rea
hes 2.5 MW,simulators whi
h use in
orre
t rea
tivity histories prior to this time are forgiven fortheir mistakes.The spe
i�
 values 
omputed in Table 5.6 show that slight errors in rea
tivity
urves 
an result in power errors of enormous magnitude, espe
ially when those errorsare allowed to a

umulate over even moderately short periods of time. Conservativemesh te
hniques allow these errors to be avoided while still permitting reasonableexe
ution times; this is the prin
iple argument for their use.
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Chapter 6
Con
lusions
The MOOSE framework is intended to be a generi
 modeling tool for simulatingmoving 
omponents on stru
tured grids. As a tool, the MOOSE provides a ri
h envi-ronment whi
h allows a wide variety of problem 
on�gurations for the investigationof eigenvalue steady state models and transient models, supporting various design
on�gurations and model layouts. Finite di�eren
e and �nite volume te
hniques arestraightforward enough that automating the translation of fundamental partial dif-ferential operators is possible. The stru
tured meshes used by the MOOSE provideadvantages in terms of low memory 
onsumption and analyti
al simpli
ity.The MOOSE framework has also been used to develop moving mesh inter
on-ne
tion strategies appropriate for studying rea
tor transients. This 
hapter suggestsareas whi
h 
an take advantage of the framework as well as some general 
on
lusionsregarding the advantages whi
h 
an be a
hieved using the MOOSE framework. The
ontributions of this thesis, as summarized in the introdu
tion, are reprodu
ed here.
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al and Computer Engineering1) A 
learly de�ned methodology for the linking of meshesChapter 3 summarizes the implementation of three rules whi
h fa
ilitate the link-ing of pat
hed meshes. The rules apply when i) meshes are misaligned, ii) meshesuse di�erent densities and iii) when material dis
ontinuities o

ur along mesh bound-aries. These rules were justi�ed through experiments and arguments based on �rstprin
iples.2) Detailed error analysis whi
h address two major questions:2 a) The extent to whi
h using 
oarse meshes with spe
ial motion te
h-niques 
an improve upon performan
eWhile a full 
omparison with a nodal 
ode fell outside the s
ope of this investi-gation, results 
omputed in Chapter 4 and Chapter 5 showed signi�
ant redu
tionsin errors whi
h resulted from 
al
ulations performed on 
oarse mixed density meshes,over similar 
al
ulations on meshes whi
h were several times more re�ned. Chapter 5quanti�ed some error redu
tions as approximately a full order of magnitude or morefor a given problem.2 b) Whether interpolation is su�
ient to 
onne
t meshesOnly in a few spe
ial 
ases should 
onservation of �ow at mesh boundaries beignored. Nonlinear interpolation alone is not an appropriate mesh 
onne
tion te
h-nique, espe
ially if meshes are linked in a pat
hwork, or non-overlapping pattern, orif material dis
ontinuities appear near mesh boundaries.3) Detailed re-examination of the estimated power peak reported in the1997 MNR te
hni
al reportSeveral experiments originally done with zero dimensional point kineti
s modelswere repeated in Chapter 5 with a multi-dimensional moving mesh model. Althoughit was suggested in the past that the MNR has a small enough rea
tor 
ore that210
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al and Computer Engineeringa spatial treatment would not reveal any spe
i�
 new details about the rea
tivityin
ident, this was not demonstrated until now. The report's 
on
lusions were veri�edto within the un
ertainty of the problem parameters.4) A prototype implementation of the MOOSE framework 
learly identi-fying a variety of design issuesMoving meshes have not been used in rea
tor physi
s in part be
ause of the per-
eption that they are di�
ult to program, di�
ult to implement, and tend to bein�exible. The �exibility of an implementation 
an be built into the solution pro-
ess using tools like 
omputer algebra and 
ode generation as presented in Chapter3. Su
h tools, illustrated by the MOOSE's design, 
an build a bridge between a user
on�gurable model and high performan
e solution te
hniques.5) The �rst highly developed nu
lear appli
ation based on the Krylov-S
hur method implemented within the SLEP
 proje
tPrevious publi
ations by the SLEP
 authors [81℄ used a simpli�ed one and a halfspeed steady state rea
tor model. The steady state results dis
ussed in Chapter 5used 8 and 12 group fully developed �ssion model 
ombined with a moving meshand are more sophisti
ated than the previously reported nu
lear models built withthis tool. SLEP
 is perhaps the only well developed high performan
e parallel publi
domain sparse eigenvalue solver available today.
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tri
al and Computer Engineering6.1 Future WorkThe following se
tions present unexplored rea
tivity models, moving mesh topi
swhi
h go beyond rea
tor physi
s, and �nally a short summary of logi
al extensions tothe MOOSE framework are summarized.6.1.1 MNR ModelsFuture work possible with the existing MOOSE framework may in
lude the analysisof additional detailed simulations of the M
Master Nu
lear Rea
tor. A fundamental
orre
tion to the model would be the development of more rigorous 
ross se
tion data.While the data that was used was 
orre
table through �ne tuning of model parameters,a produ
tion simulation used to predi
t new behaviours rather than analyze pasts
enarios, would require better foundations.Be
ause the MOOSE framework is able to move an entire sub-mesh relative tothe main geometry a sequen
e of studies whi
h examined the insertion of fuel rodswhi
h exhibited non-uniform axial burn-up patterns is possible. Most transient studiesassume a uniform axial burn-up. It would be possible to re-
ondu
t the experimentsfrom Chapter 5 using 
ross se
tional data whi
h better modeled burn-up pattern ofthe rods whi
h typi
ally o

urs.Simulations whi
h tested the sensitivity of the two dimensional model to the posi-tion and exa
t behaviour of the ion 
hamber are also important. Additional s
opingstudies whi
h further 
alibrated the modeled instruments with the a
tual instrumentsof the MNR would have been instru
tive.The MOOSE is fully 
apable of modeling both the adve
tive �ow of �uid throughthe 
ore simultaneously with modeling neutrons produ
ed within the 
ore. The in-stantaneous power is of interest to this thesis mainly in that it served as a 
hallenging212
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ase study whi
h exer
ised the various 
apabilities of the MOOSE framework. Model-ing heat build up is of interest for the safety analysis of the 
ore sin
e the question ofwhether the fuel was a
tually damaged during the rea
tivity ex
ursion is determinedby examining whether the melting point of the aluminum fuel 
ladding was ex
eeded.6.1.2 MEMS: Further Avenues of Investigation

Figure 6.1: Mite and Gear ChainThe 
ase study presented in Chapter 5 fo
used on rea
tor 
ontrol rod motion,however, this is only one possible major appli
ation to whi
h the MOOSE framework
an be applied. MEMS devi
es are one example of a modeling domain whi
h in
orpo-rates motion. Other examples outside rea
tor 
ore design in
lude, 
ombustion enginedesign, roboti
s design and aerospa
e design to name only a few. Rather than attemptto dis
uss a wide range of unrelated examples, this se
tion provides a 
olle
tion ofproblem designs whi
h in
orporate motion for whi
h there is 
urrently no a

epted213
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h the MOOSE framework would be appropriate in its 
urrentstate of development.Mi
roele
trome
hani
al Systems (MEMS)1 are devi
es whi
h range in size froma mi
rometer to a millimeter and diverge from standard sili
on manufa
turing byin
orporating moving 
omponents. Simple devi
es su
h as os
illating 
apa
itors, �uidvalves, magneti
 springs, opti
al swit
hes, relays, fra
ture and motion sensors 
an be
onstru
ted on s
ales smaller than one millimeter. The design of a MEMS devi
e issubje
t to 
omputing the simple motion of a 
omponent within either an ele
tri
 orele
tromagneti
 �eld, and the analysis of the thermal and or me
hani
al propertiesof that devi
e. Future work in the area of PSE tools whi
h fo
us on motion will �ndMEMS to be a fruitful area for problem de�nitions.Examples of MEMS Devi
es
Moving Magnet

Fixed Magnets

Figure 6.2: Mi
ro A
tuator Constru
tionRostaing [138℄ des
ribes a mi
ro a
tuator whi
h uses permanent magnets to holda swit
h in pla
e on
e it has 
hanged position in a high displa
ement design (in ex
essof 100 mi
rometers). A moving magnet is maintained in one of two stable positions byintegrated permanent magnets. A pulsed 
urrent in the 
ondu
tors a
ts on the movingmagnet displa
ing it from one stable position to the other. During movement, themobile magnet is neither guided nor retained by any me
hani
al element. Its 
entral1Image Courtesy of Sandia National Laboratories, SUMMiT Te
hnologies, www.mems.sandia.gov214
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al and Computer Engineeringposition in its stable states is ensured by the for
es from the �xed magnets, angularstability during motion is ensured by inertia.Intera
tions between magnets and 
urrents are among the most e�
ient at smalls
ales. In this appli
ation the a
tuator is driven by 
urrent pulses of up to 5 Amps in a
ondu
tor of dimensions 20 x 10 mi
rometers in its thinnest se
tions. This 
orrespondsto 
urrent densities of about 25000 Amps/mm2 and is possible due to the pe
uliaritiesof the s
ale of the devi
e.Kawano [99℄ reports on numeri
al te
hniques used to model a two dimensionalMEMS variable 
apa
itor with a

elerated motion e�e
ts. The a

eleration of the
apa
itor is derived under the equilibrium between the me
hani
al elasti
 for
e of thespring and the ele
tri
al potential as illustrated in Figure 6.3.
VV C C +   C

x

Figure 6.3: Variable MEMS Capa
itorSimulating su
h a devi
e requires a moving model whi
h 
an a

ommodate me-
hani
al, ele
tri
al, and ele
tromagneti
 phenomena. Not only are the 
apa
itor platesvery small, and hen
e their mass is very low (less than 10-10Kg), but also the systemmust be able to model very high frequen
ies.Other MEMS s
ale devi
es in
lude Mi
romirrors [177℄ whi
h are often used for im-plementing opti
al 
ross-
onne
ts. Mi
ro-valves [90℄ 
an be fabri
ated using hydrogelmaterial. Hydrogel material has the unique 
hara
teristi
 of responding to externalstimulus by 
hanging in volume. A mi
rome
hani
al sensor array of laterally mov-ing mass-spring systems is des
ribed by [144℄. The devi
e is fabri
ated by SCREAM215
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hnology and is intended for low 
ost appli
ations in wear state re
ognition. Di-aphragm membranes are used in a variety of appli
ations in a
ousti
s and are alsofound in other pressure sensitive devi
es (su
h as disposable blood pressure sensors)are des
ribed by [113, 54℄.6.1.3 Framework ExtensionsThe majority of the simulations presented in this thesis were either ellipti
 or paraboli
in nature. Hyperboli
 problems require a few additional operators (
ross produ
tfor example) for general implementation whi
h were not developed for the MOOSEframework. In prin
iple these operators 
ould be added as extensions to the alreadyexisting matrix generation fun
tions.Many models require three dimensional representations. This work was not at-tempted as part of this thesis be
ause it was believed that two dimensional modelswould be su�
iently able to demonstration the basi
 
onservation prin
iples.Allowing mesh shear and rotation transformations on moving mesh blo
ks wouldprovide other important extensions whi
h would in
rease the s
ope of geometri
 mod-els that the MOOSE framework 
ould address. Rotation and shear fun
tions further
ompli
ate 
ell linking and were not ne
essary for the target appli
ations.To be generally usable a PSE requires a detailed graphi
al user interfa
e. Whilea simpli�ed user interfa
e was developed for the framework, a fully graphi
al imple-mentation whi
h in
luded 
ontext sensitive hints system, parallel debugging tools,graphi
al mouse driven layout tools, and integrated output representation, is an im-portant and ne
essary extension.
216
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e Dis
ussionThe most re�ned mesh presented in Chapter 5 of 320x328 
ells simulated a totalof over 200000 variables for the 2 group fuel rod insertion model. On a moderndesktop 
omputer the memory allo
ation pro
edures used by the dire
t solver as partof the eigenvalue problem 
onsumed over 1 gigabyte of physi
al memory to solve thisproblem. The more memory intensive dire
t solvers were favoured for their betterexe
ution performan
e and higher pre
ision, espe
ially under the steady state tests.The transient tests did not bene�t as mu
h from the pre
ision provided by the dire
tmethods and so the GMRES solver was favoured for some of the transient tests.A dire
t dense matrix routine, like those implemented in LAPACK, would requirethe storage of the matrix as an array of 200000 rows by 200000 
olumns to representthe 320x328 mesh for the 2 group 
ase. A double pre
ision �oating point number
onsumes 8 bytes of spa
e, so su
h a matrix is stored in a dense format would 
onsume320 gigabytes of memory. While sparse solvers present their di�
ulties, for 
ertainproblems, they are 
apable of 
ir
umventing these memory requirement by assumingthat unless otherwise spe
i�ed a matrix entry is zero.While 
lassi
al relaxation methods 
an be implemented without translating theproblem into a matrix, if implemented in a naive fashion their performan
e s
ales withthe 
ube of the size of the problem. This poor performan
e alone would make themunusable as tools for this thesis. Previous simulation work [71℄ developed for the MNRused a simple hand 
oded iterative solver based on the power method whi
h performedquite poorly both in terms of pre
ision and speed when 
ompared with SLEP
'sperforman
e. Earlier versions of this work [72℄ also su�ered from poor pre
ision priorto the in
orporation of SLEP
. Plots like those presented in Chapter 5 require the
omputation of thousands of individual eigenvalues and solver performan
e, while not217
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us of this thesis, will determine whether su
h 
omputations are possible or not.The MOOSE's error 
orre
ting algorithms yield a di�eren
e in pre
ision of a full or-der of magnitude over naive volume weighted methods. This di�eren
e means roughlythat the 
al
ulation performed on the 41x40 mesh using the 
onservation method ismore pre
ise than the 
al
ulation performed using the volume weighted method ona mesh of 164x160 
ells. Depending on the eigenvalue solver method sele
ted andthe ar
hite
ture used, at best, the eigenvalue method will s
ale at about the ratio of
n · log (n) where n is the size of the problem. In the performan
e studies presentedin 
hapter 5, when timed on a wall 
lo
k, the 164x160 mesh 
al
ulation ran between50 and 100 times more slowly than the 41x40 
al
ulation depending on the pre
iseproblem setup and 
omputer used.This simple 
omparison should 
ompellingly suggest that in the 
ase of motionstudies being able to use a 
oarse grid will dramati
ally redu
e exe
ution times withoutintrodu
ing unmanageable errors.6.3 Final Con
lusionAlthough this thesis has fo
used dis
ussing performan
e in terms of redu
ing measur-able errors, it must also be pointed out that the redu
tion in implementation e�ort forea
h model built under a framework like the MOOSE is signi�
ant. Quantitativelymeasuring the human e�ort required to implement one type of model versus anotheris very di�
ult and falls squarely within the realm of learning theory, psy
hology andhuman 
omputer interfa
es. Redu
ing the implementation e�ort required by s
ientistsand engineers is just as important as redu
ing the 
omputational e�ort required by ama
hine.As dis
ussed in the previous se
tion, a one order of magnitude di�eren
e in pre-218
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ision between two methods translates into a two orders of di�eren
e in magnitudeof exe
ution time when the attempt is made to improve the pre
ision of the poorermethod by re�ning the mesh. While the 
onservation mesh methods are more 
om-plex to implement than their more obvious brute for
e 
ounterparts, the savings interms of 
osts of equipment, and the time required to wait for a given solution to bederived may be well worth the e�ort of implementation.In
reasing global problem resolution to redu
e errors should be a last resort. Meth-ods like the grid 
onservation te
hniques des
ribed in this thesis open up an entirelynew vista of 
omputational data. While moving grid te
hniques have re
eived littleattention in nu
lear forums, the results presented in this thesis suggest that there isa wealth of high pre
ision information available that 
ould improve the state of theart in nu
lear engineering, espe
ially when spe
ial problems whi
h take 
omponentmotion are to be addressed.While framework development may be expensive, and for any modeling system a
ertain learning 
urve is ne
essary, ultimately tools whi
h follow the ideals presentedby the advo
ates of PSEs will likely dominate the future simulation lands
ape. Toolslike the MOOSE framework, whi
h 
an potentially be applied to a wide variety ofproblem domains, will in the future allow resear
hers who are interested in modelingnew engineering me
hanisms to fo
us their e�orts on their parti
ular domains ofinterest rather than on the details of numeri
al modeling.
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Appendix 1 Fundamental Numeri
alAlgorithmsSeveral fundamental algorithms dis
ussed in the body of the thesis are presented inthis appendix.6.4 Conjugate GradientThe 
onjugate gradient algorithm is an example of a typi
al spe
tral method, the fol-lowing presentation is taken from [21℄. The 
onjugate gradient method is the oldestand best known of the non-stationary methods. The method pro
eeds by generat-ing ve
tor sequen
es of iterates, residuals 
orresponding to the iterates, and sear
hdire
tions used in updating the iterates and residuals. Although the length of these se-quen
es 
an be
ome large, only a small number of ve
tors needs to be kept in memory.In every iteration of the method two inner produ
ts are performed in order to 
omputeupdate s
alars that are de�ned to make the sequen
es satisfy 
ertain orthogonality
onditions.The iterates xi are updated in ea
h iteration by a multiple αi of the sear
h ve
tor
pi

xi = xi−1 + αip
iCorrespondingly the residuals ri = b−Axi are updated as

ri = ri−1 − αiq
iwhere

qi = ApiThe 
hoi
e α = αi = r(i−1)T r(i−1)/piTApi minimizes riTA−1ri over all possible 
hoi
efor α. The sear
h dire
tions are updated using the residuals
pi = ri + βi−1p

i−1236
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al and Computer EngineeringAlgorithm 5 Pseudo Code for Conjugate GradientCompute r(0)=b-Ax(0) for some initial guess x(0)for i=1, 2, ...p(i-1)=r(i-1)*r(i-1)if i=1p(1)=r(0)else B(i-1)=p(i-1)/p(i-2)p(i)=r(i-1) + B(i-1)p(i-1)endifq(i)=A*p(i)a(i)=p(i-1)/p(i) * q(i)x(i)=x(i-1)+a(i)*p(i)r(i)=r(i-1)-a(i)*q(i)
he
k for 
onvergen
e; 
ontinue if ne
essaryendwhere the 
hoi
e of βi = ri/r(i−1)T ri−1 ensures that pi and Api−1 are orthogonal.
6.5 The Multi-Grid AlgorithmThe linear multi-grid method [180, 117℄ 
an be an extremely fast solution te
hnique,although its implementation diverges quite radi
ally from the previously des
ribediterative methods be
ause it requires multiple problem representations.The multi-grid algorithm is a divide-and-
onquer te
hnique for solving ellipti
PDEs. The algorithm obtains an initial solution for an n× n grid by using an n

2
× n

2grid as an approximation, taking every other grid point from the n-by-n grid. The
oarser n
2
× n

2
grid is in turn approximated by an n

4
× n

4
grid, and so on re
ursively. Thework done on a parti
ular grid eliminates the error in half of the frequen
y 
omponentsnot eliminated on other grids. The work performed on a 
oarse grid makes the overallsolution smoother, whi
h is equivalent to getting rid of the high frequen
y error.The problem is spe
i�ed by the grid size i, the 
oe�
ient matrix is T i, and the righthand side is bi. Let P i denote the problem of solving a dis
retized ellipti
 problem ona (2i + 1)× (2i + 1) grid, with (2i − 1)2 unknowns. A sequen
e of related problems isgenerated Pm, Pm−1, Pm−2, ...P 1 on 
oarser and 
oarser grids, where the solution to

P i−1 is a good approximation to the solution of P i.Let bi be the right-hand-side of the linear system P i. Let xi denote an approxi-mate solution to P i. The restri
tion operator Ri takes a pair (bi, xi) and maps it to237
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Figure 6.4: Sequen
e of Meshes used by Multi-Grid
(bi−1, xi−1) , whi
h is a simpler problem on the next 
oarser grid, with starting guess
xi:

(bi−1, xi−1) = Ri(bi, xi)The restri
tion operator for simple problems 
an be 
omputed as a weighted av-erage of ea
h grid point value with its nearest neighbors. The interpolation operator
Ini−1 takes an approximate solution xi−1 and 
onverts it to an approximation xi forthe problem P i on the next �ner grid:

(bi, xi) = Ini−1(bi−1, xi−1)The solution operator Si take a problem P i and approximate solution xi, and
omputes an improved xi.
xi = Si(bi, xi)The improvements damp the high frequen
y 
omponents of the error. The basi
multiplied V 
y
le 
an be summarized in Algorithm 62.Multiple representations of a physi
al model of various resolutions are used by themethod to a

elerate 
onvergen
e of the model. The solution pro
ess 
y
les betweensolving a high resolution version of the model and a low resolution of the model.The low resolution representation of the problem a

elerates the 
ommuni
ation ofinformation a
ross the mesh.Multi-grid methods have ex
ellent performan
e 
hara
teristi
s. The spe
tral te
h-niques presented in the previous se
tion will �nd a solution in at best in O (n · log (n))iterations, in 
ontrast the multi-grid method 
an solve a problem in O (n) iterations.Multi-grid methods also adapt well to parallel implementations. For some problems2Algorithm is reprodu
ed from on-line 
ourse notes provided by Jim Demmelhttp://www.
s.berkeley.edu/~demmel/
s267-1995/le
ture25/le
ture25.html238
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y
lefun
tion MGV( b(i), x(i) ) ... return an improved solution... x(i) to P(i)if i = 1 ... only one unknown
ompute the exa
t solution x(1) of P(1)return ( b(1), x(1) )else x(i) = S(i)( b(i), x(i) ) ... improve the solution( b(i), d(i) ) = In(i-1)( MGV( R(i)( b(i), x(i) ) ) )... solve re
ursivelyx(i) = x(i) - d(i) ... 
orre
t fine grid solutionx(i) = S(i)( b(i), x(i) ) ... improve the solution some morereturn ( b(i), x(i) )endif
onstru
ting multiple similar representations may not be trivial (the Iniand Ri oper-ators des
ribed in the algorithm), this is the prin
iple di�
ulty asso
iated with themulti-grid method.6.6 Lan
zos AlgorithmA summary of the Lan
zos algorithm is presented here for the standard eigenvalueproblem
Ax = λxwhere A is symmetri
 and real. The algorithm starts with a properly 
hosen startingve
tor v and builds up an orthogonal basis Vj of the Krylov subspa
e,

Kj(A, v) = span{v, V A,A2v, ..., Aj−1v}one 
olumn at a time. In ea
h step just one matrix-ve
tor multipli
ation
y = Axis needed. In the new orthogonal basis Vj the operator A is represented by a realsymmetri
 tridiagonal matrix,

Tj =





α1 β1

β1 α2
. . .. . . . . . βj−1

βj−1 αj



239
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h is also built up one row and 
olumn at a time, using the basi
 re
ursion,
AVj = VjTi + re∗jwith V ∗

j r = 0. At any step j an eigensolution for Tj 
an be 
omputed as
Tjs

(j)
i = s

(j)
i θ

(j)
iwhere the supers
ript (j) is used to indi
ate that these quantities 
hange for ea
hiteration j. The Ritz value θ(j)

i and its Ritz ve
tor,
x

(j)
i = Vjs

(j)
iwill be a good approximation to an eigenpair of A if the residual has a small norm.The Ritz pair is 
omputed as

r
(j)
i = Ax

(j)
i − x

(j)
i θ

(j)
i = AVjs

(j)
i − Vjs

(j)
i θ

(j)
i = (AVj − VjTj)s

(j)
i = vj+1βjs

(j)
j,iThis norm satis�es

∥∥∥r(j)
i

∥∥∥
2

=
∣∣∣βjs

(j)
i,j

∣∣∣ = βj,ithe algorithm needs to monitor the subdiagonal elements βj of T and the last elements
s
(j)
i,j of its eigenve
tors to generate an estimate of the norm of the residual. As soon asthis estimate is small, the Ritz value θ(j)

i 
an be �agged as 
onverged to the eigenvalue
λi.
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Algorithm 7 Lan
zos Methodstart with r=vB(0)=||r||2for j=1,2,... until 
onvergen
ev(j)=r/B(j-1)r=r-v(j-1)/B(j-1)A(j)=v(j)rr=r-v(j)*a(j)reorthogonalzie if ne
essaryB(j)=||r||2
ompute approximate eigvenvalues T(j)=S*t(j)*Stest bounds for 
onvergen
eend for
ompute approximate eigenve
tors X=V(j)S
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Appendix 2 Example MOOSE PDEs
This appendix presents the MOOSE 
on�guration equations whi
h were used to spe
-ify the sparse matri
es for the 
ase study presented in Chapter 5. These equations
apture the details of the neutron di�usion equation, and the multi-value integrationmethod. Appendix 3 gives a partial listing of the sour
e 
ode whi
h is generated bythe MOOSE based on this 
on�guration �le for the 2 energy group 
ase.####################################################### Physi
al 
onstants whi
h define delayed pre
ursors ######################################################## Bet[i℄ taken from p64 D&H, Sum(B[i℄=.007) total delayed pre
ursorsBet:=[.000266, .001491, .001316, .002849, .000896, .000182℄;# Lam[i℄, taken from p64 D&H, Lam=1/TLam:=[.0183, .0458, .167, .448, 2.02, 4.49℄;# V[i℄, average group velo
ity, defined as 13,891 * sqrt(eV) m/s,# This ve
tor is in 
m/s, so the # are really big.# oi is the old index, it 
hanges depending on our mode.################################ Delayed pre
ursor equations ################################Delayed:=[C[i℄=sup[C[i℄,oi℄ + .5 * G_h *(-Lam[i℄*C[i℄ + f
al[G℄*sum(Bet[i℄*nu_Sigma_f[j℄*T[j℄,j=1..G)-Lam[i℄*sup[C[i℄,oi℄ +f
al[G℄*sum(Bet[i℄*nu_Sigma_f[j℄*sup[T[j℄,oi℄,j=1..G)), C[i℄ ℄;#Delayed pre
ursor 
al
ulation for steady state 
aseDelayed_ss:=[0=-Lam[i℄*C[i℄ +f
al[G℄*sum(Bet[i℄*nu_Sigma_f[j℄*T[j℄,j=1..G), C[i℄ ℄;
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al and Computer Engineering###################################################################### Sour
e Terms and Removal Terms for the Nuetron Diffusion Equation ####################################################################### A

ording to D&H delayed neutrons appear with a different distribution# than prompt neutrons. pChi approximates thisSour
e_new:=(.993)*Chi[i℄*f
al[G℄*sum(nu_Sigma_f[j℄*T[j℄,j=1..G)+ pChi[i℄*sum(Lam[j℄*C[j℄,j=1..6) ;Sour
e_old:=(.993)*Chi[i℄*f
al[G℄*sum(nu_Sigma_f[j℄*sup[T[j℄,oi℄,j=1..G)+ pChi[i℄*sum(Lam[j℄*sup[C[j℄,oi℄,j=1..6) ;Removal_new:=LAPL(1/(3*Sigma_tr[i℄)*T[i℄) - T[i℄*Sigma_r[i℄+ sum(T[j℄*Sigma_s[j℄[i℄,j=1..G) - T[i℄*Sigma_s[i℄[i℄;Removal_old:=LAPL(1/(3*Sigma_tr[i℄)*sup[T[i℄,oi℄) - sup[T[i℄,oi℄*Sigma_r[i℄ + sum(sup[T[j℄,oi℄*Sigma_s[j℄[i℄,j=1..G) -sup[T[i℄,oi℄*Sigma_s[i℄[i℄;############################################### Third order Multi-Value Integration Method ###############################################s1:=(G_h/G_ho);s2:=(G_h*G_h)/(G_ho*G_ho);Th[i℄:=sup[T[i℄,oi℄+s1*sup[T1[i℄,oi℄+ s2*sup[T2[i℄,oi℄;Th1[i℄:= s1*sup[T1[i℄,oi℄+2*s2*sup[T2[i℄,oi℄;Th2[i℄:= s2*sup[T2[i℄,oi℄;alpha:= G_h * (V[i℄ *( Removal_new + G_sub
rit + Sour
e_new )-Th1[i℄/G_h ) ;# third order method, Stiffly stable.Flux:= [T[i℄=Th[i℄ + alpha * (2./3.), T[i℄℄,[T1[i℄=Th1[i℄ + alpha , T1[i℄℄,[T2[i℄=Th2[i℄ + alpha * (1./3.), T2[i℄℄;# steady state in
luding pre
ursorsFlux_ss:=[ 0 = V[i℄ *( Removal_new + G_sub
rit + Sour
e_new ), T[i℄ ℄,[T1[i℄=0,T1[i℄℄,[T2[i℄=0,T2[i℄℄;
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ifi
ation by Mode Number #####################################if mode = 1then# initialization, set all variables = 0initseq:=[T[i℄=0,T[i℄℄,[T1[i℄=0,T1[i℄℄,[T2[i℄=0,T2[i℄℄;PDEs:=[seq(initseq,i=1..G),seq([C[i℄=0,C[i℄℄,i=1..6)℄;elif mode = 2then# Solve even step of integrationoi:=3;PDEs:=[seq(Flux,i=1..G),seq(Delayed,i=1..6)℄;elif mode = 3then# Solve odd step of integrationoi:=2;PDEs:=[seq(Flux,i=1..G),seq(Delayed,i=1..6)℄;elif mode = 4then# Solve steady state pre
ondition for integrationPDEs:=[seq(Flux_ss,i=1..G),seq(Delayed_ss,i=1..6)℄;end if;
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Appendix 3 Example Generated Code

/*---------------------------------------------------------------* This fun
tion is an example of the 
ode generated by the MOOSE* for the 
onstru
tion of sparse matri
es. Reprodu
ed here is* the first 4300 lines (roughly 20%) of one of the fun
tions whi
h* generates a sparse matrix for the two group transient 
ase* for the multi-value integration method.** The generated 
ode for this 
ase builds the matrix entries* ne
essary for the interior of a re
tangular mesh, as well* as the 
ode for the east and west borders for one step of* the transient algorithm. Conservation rules are embedded.** All of the 
ode in this file is automati
ally generated.* For the sake of this appendix many long 
omments have been* 
lipped. The 
omments embedded in the fun
tion des
ribe* some of the partial symboli
 variables whi
h the matrix* generator is using to generate the 
ode. Matrix generator* fun
tion names often pre
ede se
tions of 
ode whi
h they* generate.** While this fun
tion is quite long and tedious to examine by* hand, it presents no diffi
ulties for g

 to 
ompile, or for* the matrix generator to 
reate based on the input 
onfiguration* files.***** Calling arguments are as follows:** 
ell_stru
t_%s_%s 
ell stru
ture for given 
onstant/property* dimx, dimy dimension of the map, 1..dimx,1..dimy* defines the major variables, a ring exists* around these also.* key the type of 
ell being defined by the* 
aller. Certain keys mat
h 
ertain EQstrs.* Mid, bid Matrix id, and b ve
tor id.* idx variable spa
e id* mode another sele
tor for 
hoosing equations* X_st starting point in X ve
tor* dx, dy delta X and delta Y for this map* posx, posy starting position of grid[1℄[1℄* mask ??** Purpose of fun
tion:** Generates a portion of the matrix for a given key and a given245
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 subregion.** Noti
e the name of the fun
tion is given as:** matrix_build_<physi
s_name>_<
onst_name>_<property_name>** Any given basi
 map is partly defined by what 
onstant stru
ture* it uses and what property stru
ture it uses.** A basi
 map may also use multiple physi
s regiems within the map,* in parti
ular for defining border 
onditions whi
h differ from the* default border 
onditions.** Remember also that the mode whi
h is used to initialize a map* 
an also effe
t whi
h physi
al regimes are used.*---------------------------------------------------------------*/// File 
reated by Maple, 
alling parameters built as// EQFILE:="default_mp"; PRPFILE:="default_pdef";// CONFILE:="gr2_w
ell_
def"; MODES:=[2, 3, 4, 1℄;// to debug run maple in proje
t dir, exe
ute the following:// read "../../bin/eq_pp"; tra
elast;#in
lude "simlib.h"#define P_SIZE 12 // Property Sizeintmatrix_build_default_mp_gr2_w
ell_
def_default_pdef(
ell_stru
t_gr2_w
ell_
def_default_pdef *** grid, int dimx, int dimy,int key, int Mid, int bid, int idx, int mode, int X_st, float dx, float dy,float posx, float posy, int mask) {int ROW_POS, COL_POS, ROWLEN;int x, y, i, xyindex;int ierr;double VALUE;double weight[16℄;int 
ol[16℄;int 
ons_method;double 
on, 
ons, fx, fy;double reje
t_fr;ROWLEN = dimx + 2;int PHIs[MAX_R℄;double PHIsx[MAX_R℄;double PHIsy[MAX_R℄;int PHI[MAX_R℄;double fr[MAX_R℄;double unfr;
ell_stru
t_gr2_w
ell_
def_default_pdef *
ps[MAX_R℄, *
p[MAX_R℄;void *o
p;PHI[0℄ = -1;PHIs[0℄ = -1;fr[0℄ = 0;
p[0℄ = NULL;
ps[0℄ = NULL;unfr = 0;o
p = NULL;double SUP[1000℄, t[1000℄; // temporary storage for optimizationfx = 0;fy = 0;
on = 0;
ons = 0;VALUE = 0;COL_POS = 0;ierr = 0;i = 0;xyindex = 0; 246
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on = 0;SUP[0℄ = 0;t[0℄ = 0;if (grid != NULL) {if (mode == 2) {/*do the interior setup (easy)*/for (y = 1; y <= dimy; y++)for (x = 1; x <= dimx; x++) {if (grid[x℄[y℄->
ell_id == key) {//*******************Call made to gen:-mat_blo
k()// *************** 
all made to pre_supsr
SUP[1℄ =rs_rd_pt(3, rs_prop_T, posx + dx * (x + -.5),posy + dy * (y + -.5), 1, 1);SUP[2℄ =rs_rd_pt(3, rs_prop_T1, posx + dx * (x + -.5),posy + dy * (y + -.5), 1, 1);SUP[3℄ =rs_rd_pt(3, rs_prop_T2, posx + dx * (x + -.5),posy + dy * (y + -.5), 1, 1);SUP[4℄ =rs_rd_pt(3, rs_prop_T, posx + dx * (x + -.5),posy + dy * (y + -.5), 2, 1);SUP[5℄ =rs_rd_pt(3, rs_prop_T1, posx + dx * (x + -.5),posy + dy * (y + -.5), 2, 1);SUP[6℄ =rs_rd_pt(3, rs_prop_T2, posx + dx * (x + -.5),posy + dy * (y + -.5), 2, 1);SUP[7℄ =rs_rd_pt(3, rs_prop_C, posx + dx * (x + -.5),posy + dy * (y + -.5), 1, 1);SUP[8℄ =rs_rd_pt(3, rs_prop_C, posx + dx * (x + -.5),posy + dy * (y + -.5), 2, 1);SUP[9℄ =rs_rd_pt(3, rs_prop_C, posx + dx * (x + -.5),posy + dy * (y + -.5), 3, 1);SUP[10℄ =rs_rd_pt(3, rs_prop_C, posx + dx * (x + -.5),posy + dy * (y + -.5), 4, 1);SUP[11℄ =rs_rd_pt(3, rs_prop_C, posx + dx * (x + -.5),posy + dy * (y + -.5), 5, 1);SUP[12℄ =rs_rd_pt(3, rs_prop_C, posx + dx * (x + -.5),posy + dy * (y + -.5), 6, 1);//PDE [T[1℄ = SUP[1℄+G_h/G_ho*SUP[2℄+G_h^2/G_ho^2*SUP[3℄+.6666666667*G_h*(V[1℄*(1/3*(T[e℄[1℄/(1//PDE_vars [T[1℄, T1[1℄, T2[1℄, T[2℄, T1[2℄, T2[2℄, C[1℄, C[2℄, C[3℄, C[4℄, C[5℄, C[6℄℄/******************/// var[1℄=1// 
of[1℄=-.6666666667*G_h*(V[1℄*G_sub
rit-1.*(G_h/G_ho*SUP[2℄+2.*G_h^2/G_ho^2*SUP[3℄)/G_h)-1.*// var[2℄=C[6℄// 
of[2℄=-2.993333333*G_h*V[1℄*pChi[1℄// var[3℄=T[2℄// 
of[3℄=-.6666666667*G_h*V[1℄*(.993*grid[x+0℄[y+0℄->
->Chi[0℄*f
al[2℄*grid[x+0℄[y+0℄->
->nu_S// var[4℄=C[5℄// 
of[4℄=-1.346666667*G_h*V[1℄*pChi[1℄// var[5℄=C[1℄// 
of[5℄=-.1220000000e-1*G_h*V[1℄*pChi[1℄// var[6℄=C[2℄// 
of[6℄=-.3053333333e-1*G_h*V[1℄*pChi[1℄247
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of[7℄=-.1113333333*G_h*V[1℄*pChi[1℄// var[8℄=C[4℄// 
of[8℄=-.2986666667*G_h*V[1℄*pChi[1℄// var[9℄=T[e℄[1℄// 
of[9℄=-.2222222222*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[0℄+.5000000000*grid[x+// var[10℄=T[w℄[1℄// 
of[10℄=-.2222222222*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[0℄+.5000000000*grid[x// var[11℄=T[n℄[1℄// 
of[11℄=-.2222222222*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[0℄+.5000000000*grid[x// var[12℄=T[s℄[1℄// 
of[12℄=-.2222222222*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[0℄+.5000000000*grid[x// diag=T[1℄// diagmult=1-.6666666667*G_h*V[1℄*(-1/3/(1/2*`grid[x+0℄[y+0℄->
->Sigma_tr[0℄`+1/2*`grid[x+1℄[y/******************/// Row for EQ T[1℄ = SUP[1℄+G_h/G_ho*SUP[2℄+G_h^2/G_ho^2*SUP[3℄+.6666666667*G_h*(V[1℄*(1/3*(T[e// Variables represented by this insertion://[1, C[6℄, T[2℄, C[5℄, C[1℄, C[2℄, C[3℄, C[4℄, T[e℄[1℄, T[w℄[1℄, T[n℄[1℄, T[s℄[1℄℄// The diagonal element is set to:// 1-.6666666667*G_h*V[1℄*(-1/3/(1/2*`grid[x+0℄[y+0℄->
->Sigma_tr[0℄`+1/2*`grid[x+1℄[y+0℄->
->SROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat stru
ture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 2 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 7 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);t[4℄ = 1. / (dx * dx);t[13℄ = 1. / (dy * dy);VALUE =1 -.6666666667 * G_h * V[1℄ * (1. /(grid[x + 0℄[y + 0℄->
->Sigma_tr[0℄ +grid[x + 1℄[y +0℄->
->Sigma_tr[0℄) * t[4℄ *-2. * 1. / 3. +1. /(grid[x + 0℄[y + 0℄->
->Sigma_tr[0℄ +grid[x + -1℄[y +0℄->
->Sigma_tr[0℄) * t[4℄ *248
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->Sigma_tr[0℄ +grid[x + 0℄[y +-1℄->
->Sigma_tr[0℄) *t[13℄ * -2. * 1. /3. +1. /(grid[x + 0℄[y + 0℄->
->Sigma_tr[0℄ +grid[x + 0℄[y +1℄->
->Sigma_tr[0℄) *t[13℄ * -2. * 1. /3. - grid[x + 0℄[y +0℄->
->Sigma_r[0℄ + .993 * grid[x + 0℄[y +0℄->
->Chi[0℄ *f
al[2℄ * grid[x +0℄[y +0℄->
->nu_Sigma_f[0℄);matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -2.993333333 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.6666666667 * G_h * V[1℄ * (.993 *grid[x + 0℄[y +0℄->
->Chi[0℄ * f
al[2℄ *grid[x + 0℄[y +0℄->
->nu_Sigma_f[1℄ +grid[x + 0℄[y + 0℄->
->Sigma_s[1℄[0℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -1.346666667 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;VALUE = -.1220000000e-1 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 1 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -.3053333333e-1 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 2 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -.1113333333 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -.2986666667 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.2222222222 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[0℄ +.5000000000 *grid[x + 1℄[y +0℄->249
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->Sigma_tr[0℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + -P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.2222222222 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[0℄ +.5000000000 *grid[x + -1℄[y +0℄->
->Sigma_tr[0℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + -ROWLEN * P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.2222222222 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[0℄ +.5000000000 * grid[x + 0℄[y +-1℄->
->Sigma_tr[0℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + ROWLEN * P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.2222222222 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[0℄ +.5000000000 * grid[x + 0℄[y +1℄->
->Sigma_tr[0℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);t[4℄ = G_h * 1. / G_ho * SUP[2℄;t[5℄ = G_h * G_h;t[6℄ = G_ho * G_ho;t[9℄ = t[5℄ * 1. / t[6℄ * SUP[3℄;VALUE =.6666666667 * G_h * (V[1℄ * G_sub
rit -1. * (t[4℄ +2. * t[9℄) * 1. /G_h) + 1. * SUP[1℄ + 1. * t[4℄ + 1. * t[9℄;ve
tdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// 
of[1℄=-1.*G_h/G_ho*SUP[2℄-2.*G_h^2/G_ho^2*SUP[3℄-1.*G_h*(V[1℄*G_sub
rit-1.*(G_h/G_ho*SUP[2℄// var[2℄=C[6℄// 
of[2℄=-4.49*G_h*V[1℄*pChi[1℄// var[3℄=T[2℄// 
of[3℄=-1.*G_h*V[1℄*(.993*grid[x+0℄[y+0℄->
->Chi[0℄*f
al[2℄*grid[x+0℄[y+0℄->
->nu_Sigma_f[1℄// var[4℄=T[1℄// 
of[4℄=-1.*G_h*V[1℄*(-.3333333333/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[0℄+.5000000000*gr// var[5℄=C[5℄// 
of[5℄=-2.02*G_h*V[1℄*pChi[1℄// var[6℄=C[1℄// 
of[6℄=-.183e-1*G_h*V[1℄*pChi[1℄// var[7℄=C[2℄// 
of[7℄=-.458e-1*G_h*V[1℄*pChi[1℄// var[8℄=C[3℄// 
of[8℄=-.167*G_h*V[1℄*pChi[1℄// var[9℄=C[4℄// 
of[9℄=-.448*G_h*V[1℄*pChi[1℄// var[10℄=T[e℄[1℄ 250
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of[10℄=-.3333333333*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[0℄+.5000000000*grid[x// var[11℄=T[w℄[1℄// 
of[11℄=-.3333333333*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[0℄+.5000000000*grid[x// var[12℄=T[n℄[1℄// 
of[12℄=-.3333333333*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[0℄+.5000000000*grid[x// var[13℄=T[s℄[1℄// 
of[13℄=-.3333333333*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[0℄+.5000000000*grid[x// diag=T1[1℄// diagmult=1/******************/// Row for EQ T1[1℄ = G_h/G_ho*SUP[2℄+2*G_h^2/G_ho^2*SUP[3℄+G_h*(V[1℄*(1/3*(T[e℄[1℄/(1/2*Sigma_// Variables represented by this insertion://[1, C[6℄, T[2℄, T[1℄, C[5℄, C[1℄, C[2℄, C[3℄, C[4℄, T[e℄[1℄, T[w℄[1℄, T[n℄[1℄, T[s℄[1℄℄// The diagonal element is set to:// 1 ROW_POS = X_st + 8 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat stru
ture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 2 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 7 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -4.49 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-1. * G_h * V[1℄ * (.993 *grid[x + 0℄[y +0℄->
->Chi[0℄ *f
al[2℄ * grid[x + 0℄[y +0℄->
->nu_Sigma_f[1℄ + grid[x + 0℄[y +0℄->
->Sigma_s[1℄[0℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;t[2℄ = .5000000000 * grid[x + 0℄[y + 0℄->
->Sigma_tr[0℄;t[6℄ = 1. / (dx * dx);t[17℄ = 1. / (dy * dy);VALUE =-1. * G_h * V[1℄ * (-.3333333333 * 1. /251
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al and Computer Engineering(t[2℄ +.5000000000 * grid[x + 1℄[y +0℄->
->Sigma_tr[0℄) * t[6℄ -.3333333333 * 1. / (t[2℄ +.5000000000 * grid[x + -1℄[y +0℄->
->Sigma_tr[0℄) *t[6℄ - .3333333333 * 1. / (t[2℄ +.5000000000 *grid[x + 0℄[y +-1℄->
->Sigma_tr[0℄)* t[17℄ - .3333333333 * 1. / (t[2℄ +.5000000000 *grid[x + 0℄[y +1℄->
->Sigma_tr[0℄) *t[17℄ - 1. * grid[x + 0℄[y +0℄->
->Sigma_r[0℄ +.993 * grid[x + 0℄[y +0℄->
->Chi[0℄ * f
al[2℄ *grid[x + 0℄[y + 0℄->
->nu_Sigma_f[0℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -2.02 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;VALUE = -.183e-1 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 1 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -.458e-1 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 2 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -.167 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -.448 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[0℄ +.5000000000 *grid[x + 1℄[y +0℄->
->Sigma_tr[0℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + -P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[0℄ +.5000000000 *grid[x + -1℄[y +0℄->
->Sigma_tr[0℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS = 252
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al and Computer EngineeringX_st + -ROWLEN * P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[0℄ +.5000000000 * grid[x + 0℄[y +-1℄->
->Sigma_tr[0℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + ROWLEN * P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[0℄ +.5000000000 * grid[x + 0℄[y +1℄->
->Sigma_tr[0℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);t[3℄ = G_h * 1. / G_ho * SUP[2℄;t[5℄ = G_h * G_h;t[6℄ = G_ho * G_ho;t[10℄ = 2. * t[5℄ * 1. / t[6℄ * SUP[3℄;VALUE =1. * t[3℄ + t[10℄ + 1. * G_h * (V[1℄ * G_sub
rit -1. * (t[3℄ + t[10℄) * 1. / G_h);ve
tdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// 
of[1℄=-1.*G_h^2/G_ho^2*SUP[3℄-.3333333333*G_h*(V[1℄*G_sub
rit-1.*(G_h/G_ho*SUP[2℄+2.*G_h^2/// var[2℄=C[6℄// 
of[2℄=-1.496666667*G_h*V[1℄*pChi[1℄// var[3℄=T[2℄// 
of[3℄=-.3333333333*G_h*V[1℄*(.993*grid[x+0℄[y+0℄->
->Chi[0℄*f
al[2℄*grid[x+0℄[y+0℄->
->nu_S// var[4℄=T[1℄// 
of[4℄=-.3333333333*G_h*V[1℄*(-.3333333333/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[0℄+.5000// var[5℄=C[5℄// 
of[5℄=-.6733333333*G_h*V[1℄*pChi[1℄// var[6℄=C[1℄// 
of[6℄=-.6099999999e-2*G_h*V[1℄*pChi[1℄// var[7℄=C[2℄// 
of[7℄=-.1526666667e-1*G_h*V[1℄*pChi[1℄// var[8℄=C[3℄// 
of[8℄=-.5566666666e-1*G_h*V[1℄*pChi[1℄// var[9℄=C[4℄// 
of[9℄=-.1493333333*G_h*V[1℄*pChi[1℄// var[10℄=T[e℄[1℄// 
of[10℄=-.1111111111*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[0℄+.5000000000*grid[x// var[11℄=T[w℄[1℄// 
of[11℄=-.1111111111*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[0℄+.5000000000*grid[x// var[12℄=T[n℄[1℄// 
of[12℄=-.1111111111*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[0℄+.5000000000*grid[x// var[13℄=T[s℄[1℄// 
of[13℄=-.1111111111*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[0℄+.5000000000*grid[x// diag=T2[1℄// diagmult=1/******************/// Row for EQ T2[1℄ = G_h^2/G_ho^2*SUP[3℄+.3333333333*G_h*(V[1℄*(1/3*(T[e℄[1℄/(1/2*Sigma_tr[1℄+// Variables represented by this insertion://[1, C[6℄, T[2℄, T[1℄, C[5℄, C[1℄, C[2℄, C[3℄, C[4℄, T[e℄[1℄, T[w℄[1℄, T[n℄[1℄, T[s℄[1℄℄// The diagonal element is set to:// 1 ROW_POS = X_st + 10 + y * ROWLEN * P_SIZE + P_SIZE * x;253
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Master - Ele
tri
al and Computer Engineeringmatrixdr_OPEN(Mid, ROW_POS);// Zero mat stru
ture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 2 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 7 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -1.496666667 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[1℄ * (.993 *grid[x + 0℄[y +0℄->
->Chi[0℄ * f
al[2℄ *grid[x + 0℄[y +0℄->
->nu_Sigma_f[1℄ +grid[x + 0℄[y + 0℄->
->Sigma_s[1℄[0℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;t[2℄ = .5000000000 * grid[x + 0℄[y + 0℄->
->Sigma_tr[0℄;t[6℄ = 1. / (dx * dx);t[17℄ = 1. / (dy * dy);VALUE =-.3333333333 * G_h * V[1℄ * (-.3333333333 * 1. /(t[2℄ +.5000000000 *grid[x + 1℄[y +0℄->
->Sigma_tr[0℄) *t[6℄ -.3333333333 * 1. /(t[2℄ + .5000000000 * grid[x + -1℄[y +0℄->
->Sigma_tr[0℄) *t[6℄ -.3333333333 * 1. /(t[2℄ + .5000000000 * grid[x + 0℄[y +-1℄->
->254



PhD thesis D. Gilbert M
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tri
al and Computer EngineeringSigma_tr[0℄) *t[17℄ -.3333333333 * 1. /(t[2℄ + .5000000000 * grid[x + 0℄[y +1℄->
->Sigma_tr[0℄) * t[17℄ - 1. * grid[x +0℄[y + 0℄->
->Sigma_r[0℄ +.993 * grid[x + 0℄[y +0℄->
->Chi[0℄ *f
al[2℄ * grid[x + 0℄[y +0℄->
->nu_Sigma_f[0℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 4 + P_SIZE * x;VALUE = -.6733333333 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;VALUE = -.6099999999e-2 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 1 + P_SIZE * x;VALUE = -.1526666667e-1 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;VALUE = -.5566666666e-1 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 3 + P_SIZE * x;VALUE = -.1493333333 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.1111111111 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[0℄ +.5000000000 *grid[x + 1℄[y +0℄->
->Sigma_tr[0℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + -P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.1111111111 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[0℄ +.5000000000 *grid[x + -1℄[y +0℄->
->Sigma_tr[0℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + -ROWLEN * P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.1111111111 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[0℄ +.5000000000 * grid[x + 0℄[y +-1℄->
->Sigma_tr[0℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + ROWLEN * P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;255
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tri
al and Computer EngineeringVALUE =-.1111111111 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[0℄ +.5000000000 * grid[x + 0℄[y +1℄->
->Sigma_tr[0℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);t[1℄ = G_h * G_h;t[2℄ = G_ho * G_ho;t[5℄ = t[1℄ * 1. / t[2℄ * SUP[3℄;VALUE =1. * t[5℄ +.3333333333 * G_h * (V[1℄ * G_sub
rit -1. * (G_h * 1. / G_ho *SUP[2℄ + 2. * t[5℄) * 1. / G_h);ve
tdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// 
of[1℄=-.6666666667*G_h*(V[2℄*G_sub
rit-1.*(G_h/G_ho*SUP[5℄+2.*G_h^2/G_ho^2*SUP[6℄)/G_h)-1.*// var[2℄=C[6℄// 
of[2℄=-2.993333333*G_h*V[2℄*pChi[2℄// var[3℄=T[1℄// 
of[3℄=-.6666666667*G_h*V[2℄*(grid[x+0℄[y+0℄->
->Sigma_s[0℄[1℄+.993*grid[x+0℄[y+0℄->
->Chi[1// var[4℄=C[5℄// 
of[4℄=-1.346666667*G_h*V[2℄*pChi[2℄// var[5℄=C[1℄// 
of[5℄=-.1220000000e-1*G_h*V[2℄*pChi[2℄// var[6℄=C[2℄// 
of[6℄=-.3053333333e-1*G_h*V[2℄*pChi[2℄// var[7℄=C[3℄// 
of[7℄=-.1113333333*G_h*V[2℄*pChi[2℄// var[8℄=C[4℄// 
of[8℄=-.2986666667*G_h*V[2℄*pChi[2℄// var[9℄=T[e℄[2℄// 
of[9℄=-.2222222222*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[1℄+.5000000000*grid[x+// var[10℄=T[w℄[2℄// 
of[10℄=-.2222222222*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[1℄+.5000000000*grid[x// var[11℄=T[n℄[2℄// 
of[11℄=-.2222222222*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[1℄+.5000000000*grid[x// var[12℄=T[s℄[2℄// 
of[12℄=-.2222222222*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[1℄+.5000000000*grid[x// diag=T[2℄// diagmult=1-.6666666667*G_h*V[2℄*(-1/3/(1/2*`grid[x+0℄[y+0℄->
->Sigma_tr[1℄`+1/2*`grid[x+1℄[y/******************/// Row for EQ T[2℄ = SUP[4℄+G_h/G_ho*SUP[5℄+G_h^2/G_ho^2*SUP[6℄+.6666666667*G_h*(V[2℄*(1/3*(T[e// Variables represented by this insertion://[1, C[6℄, T[1℄, C[5℄, C[1℄, C[2℄, C[3℄, C[4℄, T[e℄[2℄, T[w℄[2℄, T[n℄[2℄, T[s℄[2℄℄// The diagonal element is set to:// 1-.6666666667*G_h*V[2℄*(-1/3/(1/2*`grid[x+0℄[y+0℄->
->Sigma_tr[1℄`+1/2*`grid[x+1℄[y+0℄->
->SROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat stru
ture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 1;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 3;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 4;matrixdr_ADDzero(COL_POS);256
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al and Computer EngineeringCOL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);t[4℄ = 1. / (dx * dx);t[13℄ = 1. / (dy * dy);VALUE =1 -.6666666667 * G_h * V[2℄ * (1. /(grid[x + 0℄[y + 0℄->
->Sigma_tr[1℄ +grid[x + 1℄[y +0℄->
->Sigma_tr[1℄) * t[4℄ *-2. * 1. / 3. +1. /(grid[x + 0℄[y + 0℄->
->Sigma_tr[1℄ +grid[x + -1℄[y +0℄->
->Sigma_tr[1℄) * t[4℄ *-2. * 1. / 3. +1. /(grid[x + 0℄[y + 0℄->
->Sigma_tr[1℄ +grid[x + 0℄[y +-1℄->
->Sigma_tr[1℄) *t[13℄ * -2. * 1. /3. +1. /(grid[x + 0℄[y + 0℄->
->Sigma_tr[1℄ +grid[x + 0℄[y +1℄->
->Sigma_tr[1℄) *t[13℄ * -2. * 1. /3. - grid[x + 0℄[y +0℄->
->Sigma_r[1℄ + .993 * grid[x + 0℄[y +0℄->
->Chi[1℄ *f
al[2℄ * grid[x +0℄[y +0℄->
->nu_Sigma_f[1℄);matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -2.993333333 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-.6666666667 * G_h * V[2℄ *(grid[x + 0℄[y + 0℄->
->Sigma_s[0℄[1℄ +257
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al and Computer Engineering.993 * grid[x + 0℄[y +0℄->
->Chi[1℄ * f
al[2℄ *grid[x + 0℄[y + 0℄->
->nu_Sigma_f[0℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 4 + P_SIZE * x;VALUE = -1.346666667 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;VALUE = -.1220000000e-1 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 1 + P_SIZE * x;VALUE = -.3053333333e-1 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;VALUE = -.1113333333 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 3 + P_SIZE * x;VALUE = -.2986666667 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.2222222222 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[1℄ +.5000000000 *grid[x + 1℄[y +0℄->
->Sigma_tr[1℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + -P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.2222222222 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[1℄ +.5000000000 *grid[x + -1℄[y +0℄->
->Sigma_tr[1℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + -ROWLEN * P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.2222222222 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[1℄ +.5000000000 * grid[x + 0℄[y +-1℄->
->Sigma_tr[1℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + ROWLEN * P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.2222222222 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[1℄ +.5000000000 * grid[x + 0℄[y +1℄->
->Sigma_tr[1℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);t[4℄ = G_h * 1. / G_ho * SUP[5℄;t[5℄ = G_h * G_h; 258
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al and Computer Engineeringt[6℄ = G_ho * G_ho;t[9℄ = t[5℄ * 1. / t[6℄ * SUP[6℄;VALUE =.6666666667 * G_h * (V[2℄ * G_sub
rit -1. * (t[4℄ +2. * t[9℄) * 1. /G_h) + 1. * SUP[4℄ + 1. * t[4℄ + 1. * t[9℄;ve
tdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// 
of[1℄=-1.*G_h/G_ho*SUP[5℄-2.*G_h^2/G_ho^2*SUP[6℄-1.*G_h*(V[2℄*G_sub
rit-1.*(G_h/G_ho*SUP[5℄// var[2℄=C[6℄// 
of[2℄=-4.49*G_h*V[2℄*pChi[2℄// var[3℄=T[2℄// 
of[3℄=-1.*G_h*V[2℄*(-.3333333333/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[1℄+.5000000000*gr// var[4℄=T[1℄// 
of[4℄=-1.*G_h*V[2℄*(grid[x+0℄[y+0℄->
->Sigma_s[0℄[1℄+.993*grid[x+0℄[y+0℄->
->Chi[1℄*f
al[2℄// var[5℄=C[5℄// 
of[5℄=-2.02*G_h*V[2℄*pChi[2℄// var[6℄=C[1℄// 
of[6℄=-.183e-1*G_h*V[2℄*pChi[2℄// var[7℄=C[2℄// 
of[7℄=-.458e-1*G_h*V[2℄*pChi[2℄// var[8℄=C[3℄// 
of[8℄=-.167*G_h*V[2℄*pChi[2℄// var[9℄=C[4℄// 
of[9℄=-.448*G_h*V[2℄*pChi[2℄// var[10℄=T[e℄[2℄// 
of[10℄=-.3333333333*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[1℄+.5000000000*grid[x// var[11℄=T[w℄[2℄// 
of[11℄=-.3333333333*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[1℄+.5000000000*grid[x// var[12℄=T[n℄[2℄// 
of[12℄=-.3333333333*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[1℄+.5000000000*grid[x// var[13℄=T[s℄[2℄// 
of[13℄=-.3333333333*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[1℄+.5000000000*grid[x// diag=T1[2℄// diagmult=1/******************/// Row for EQ T1[2℄ = G_h/G_ho*SUP[5℄+2*G_h^2/G_ho^2*SUP[6℄+G_h*(V[2℄*(1/3*(T[e℄[2℄/(1/2*Sigma_// Variables represented by this insertion://[1, C[6℄, T[2℄, T[1℄, C[5℄, C[1℄, C[2℄, C[3℄, C[4℄, T[e℄[2℄, T[w℄[2℄, T[n℄[2℄, T[s℄[2℄℄// The diagonal element is set to:// 1 ROW_POS = X_st + 9 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat stru
ture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 1;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 3;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 4;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);259
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tri
al and Computer EngineeringCOL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -4.49 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;t[2℄ = .5000000000 * grid[x + 0℄[y + 0℄->
->Sigma_tr[1℄;t[6℄ = 1. / (dx * dx);t[17℄ = 1. / (dy * dy);VALUE =-1. * G_h * V[2℄ * (-.3333333333 * 1. /(t[2℄ +.5000000000 * grid[x + 1℄[y +0℄->
->Sigma_tr[1℄) * t[6℄ -.3333333333 * 1. / (t[2℄ +.5000000000 * grid[x + -1℄[y +0℄->
->Sigma_tr[1℄) *t[6℄ - .3333333333 * 1. / (t[2℄ +.5000000000 *grid[x + 0℄[y +-1℄->
->Sigma_tr[1℄)* t[17℄ - .3333333333 * 1. / (t[2℄ +.5000000000 *grid[x + 0℄[y +1℄->
->Sigma_tr[1℄) *t[17℄ - 1. * grid[x + 0℄[y +0℄->
->Sigma_r[1℄ +.993 * grid[x + 0℄[y +0℄->
->Chi[1℄ * f
al[2℄ *grid[x + 0℄[y + 0℄->
->nu_Sigma_f[1℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-1. * G_h * V[2℄ *(grid[x + 0℄[y + 0℄->
->Sigma_s[0℄[1℄ +.993 * grid[x + 0℄[y +0℄->
->Chi[1℄ * f
al[2℄ *grid[x + 0℄[y + 0℄->
->nu_Sigma_f[0℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 4 + P_SIZE * x;VALUE = -2.02 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;VALUE = -.183e-1 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 1 + P_SIZE * x;VALUE = -.458e-1 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;VALUE = -.167 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 3 + P_SIZE * x;260
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al and Computer EngineeringVALUE = -.448 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[1℄ +.5000000000 *grid[x + 1℄[y +0℄->
->Sigma_tr[1℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + -P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[1℄ +.5000000000 *grid[x + -1℄[y +0℄->
->Sigma_tr[1℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + -ROWLEN * P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[1℄ +.5000000000 * grid[x + 0℄[y +-1℄->
->Sigma_tr[1℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + ROWLEN * P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[1℄ +.5000000000 * grid[x + 0℄[y +1℄->
->Sigma_tr[1℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);t[3℄ = G_h * 1. / G_ho * SUP[5℄;t[5℄ = G_h * G_h;t[6℄ = G_ho * G_ho;t[10℄ = 2. * t[5℄ * 1. / t[6℄ * SUP[6℄;VALUE =1. * t[3℄ + t[10℄ + 1. * G_h * (V[2℄ * G_sub
rit -1. * (t[3℄ + t[10℄) * 1. / G_h);ve
tdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// 
of[1℄=-1.*G_h^2/G_ho^2*SUP[6℄-.3333333333*G_h*(V[2℄*G_sub
rit-1.*(G_h/G_ho*SUP[5℄+2.*G_h^2/// var[2℄=C[6℄// 
of[2℄=-1.496666667*G_h*V[2℄*pChi[2℄// var[3℄=T[2℄// 
of[3℄=-.3333333333*G_h*V[2℄*(-.3333333333/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[1℄+.5000// var[4℄=T[1℄// 
of[4℄=-.3333333333*G_h*V[2℄*(grid[x+0℄[y+0℄->
->Sigma_s[0℄[1℄+.993*grid[x+0℄[y+0℄->
->Chi[1// var[5℄=C[5℄// 
of[5℄=-.6733333333*G_h*V[2℄*pChi[2℄ 261
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tri
al and Computer Engineering// var[6℄=C[1℄// 
of[6℄=-.6099999999e-2*G_h*V[2℄*pChi[2℄// var[7℄=C[2℄// 
of[7℄=-.1526666667e-1*G_h*V[2℄*pChi[2℄// var[8℄=C[3℄// 
of[8℄=-.5566666666e-1*G_h*V[2℄*pChi[2℄// var[9℄=C[4℄// 
of[9℄=-.1493333333*G_h*V[2℄*pChi[2℄// var[10℄=T[e℄[2℄// 
of[10℄=-.1111111111*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[1℄+.5000000000*grid[x// var[11℄=T[w℄[2℄// 
of[11℄=-.1111111111*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[1℄+.5000000000*grid[x// var[12℄=T[n℄[2℄// 
of[12℄=-.1111111111*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[1℄+.5000000000*grid[x// var[13℄=T[s℄[2℄// 
of[13℄=-.1111111111*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->
->Sigma_tr[1℄+.5000000000*grid[x// diag=T2[2℄// diagmult=1/******************/// Row for EQ T2[2℄ = G_h^2/G_ho^2*SUP[6℄+.3333333333*G_h*(V[2℄*(1/3*(T[e℄[2℄/(1/2*Sigma_tr[2℄+// Variables represented by this insertion://[1, C[6℄, T[2℄, T[1℄, C[5℄, C[1℄, C[2℄, C[3℄, C[4℄, T[e℄[2℄, T[w℄[2℄, T[n℄[2℄, T[s℄[2℄℄// The diagonal element is set to:// 1 ROW_POS = X_st + 11 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat stru
ture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 1;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 3;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 4;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -1.496666667 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;t[2℄ = .5000000000 * grid[x + 0℄[y + 0℄->
->Sigma_tr[1℄;t[6℄ = 1. / (dx * dx);t[17℄ = 1. / (dy * dy);VALUE =-.3333333333 * G_h * V[2℄ * (-.3333333333 * 1. /(t[2℄ +.5000000000 *262
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->Sigma_tr[1℄) *t[6℄ -.3333333333 * 1. /(t[2℄ + .5000000000 * grid[x + -1℄[y +0℄->
->Sigma_tr[1℄) *t[6℄ -.3333333333 * 1. /(t[2℄ + .5000000000 * grid[x + 0℄[y +-1℄->
->Sigma_tr[1℄) *t[17℄ -.3333333333 * 1. /(t[2℄ + .5000000000 * grid[x + 0℄[y +1℄->
->Sigma_tr[1℄) * t[17℄ - 1. * grid[x +0℄[y + 0℄->
->Sigma_r[1℄ +.993 * grid[x + 0℄[y +0℄->
->Chi[1℄ *f
al[2℄ * grid[x + 0℄[y +0℄->
->nu_Sigma_f[1℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-.3333333333 * G_h * V[2℄ *(grid[x + 0℄[y + 0℄->
->Sigma_s[0℄[1℄ +.993 * grid[x + 0℄[y +0℄->
->Chi[1℄ * f
al[2℄ *grid[x + 0℄[y + 0℄->
->nu_Sigma_f[0℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 4 + P_SIZE * x;VALUE = -.6733333333 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;VALUE = -.6099999999e-2 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 1 + P_SIZE * x;VALUE = -.1526666667e-1 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;VALUE = -.5566666666e-1 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 3 + P_SIZE * x;VALUE = -.1493333333 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.1111111111 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[1℄ +.5000000000 *grid[x + 1℄[y +0℄->
->Sigma_tr[1℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + -P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;263



PhD thesis D. Gilbert M
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tri
al and Computer EngineeringVALUE =-.1111111111 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[1℄ +.5000000000 *grid[x + -1℄[y +0℄->
->Sigma_tr[1℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + -ROWLEN * P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.1111111111 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[1℄ +.5000000000 * grid[x + 0℄[y +-1℄->
->Sigma_tr[1℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + ROWLEN * P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.1111111111 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->
->Sigma_tr[1℄ +.5000000000 * grid[x + 0℄[y +1℄->
->Sigma_tr[1℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);t[1℄ = G_h * G_h;t[2℄ = G_ho * G_ho;t[5℄ = t[1℄ * 1. / t[2℄ * SUP[6℄;VALUE =1. * t[5℄ +.3333333333 * G_h * (V[2℄ * G_sub
rit -1. * (G_h * 1. / G_ho *SUP[5℄ + 2. * t[5℄) * 1. / G_h);ve
tdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// 
of[1℄=-1.*SUP[7℄-.5*G_h*(-.183e-1*SUP[7℄+f
al[2℄*(.266e-3*grid[x+0℄[y+0℄->
->nu_Sigma_f[0℄*// var[2℄=T[2℄// 
of[2℄=-.1330e-3*G_h*f
al[2℄*grid[x+0℄[y+0℄->
->nu_Sigma_f[1℄// var[3℄=T[1℄// 
of[3℄=-.1330e-3*G_h*f
al[2℄*grid[x+0℄[y+0℄->
->nu_Sigma_f[0℄// diag=C[1℄// diagmult=1+.915e-2*G_h/******************/// Row for EQ C[1℄ = SUP[7℄+.5*G_h*(-.183e-1*C[1℄+f
al[2℄*(.266e-3*nu_Sigma_f[1℄*T[1℄+.266e-3*n// Variables represented by this insertion://[1, T[2℄, T[1℄℄// The diagonal element is set to:// 1+.915e-2*G_h ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);// Zero mat stru
ture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 1;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);264
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al and Computer EngineeringCOL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 3;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 4;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1 + .915e-2 * G_h;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;VALUE =-.1330e-3 * G_h * f
al[2℄ * grid[x + 0℄[y + 0℄->
->nu_Sigma_f[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-.1330e-3 * G_h * f
al[2℄ * grid[x + 0℄[y + 0℄->
->nu_Sigma_f[0℄;matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);VALUE =1. * SUP[7℄ + .5 * G_h * (-.183e-1 * SUP[7℄ +f
al[2℄ * (.266e-3 *grid[x + 0℄[y +0℄->
->nu_Sigma_f[0℄* SUP[1℄ + .266e-3 * grid[x +0℄[y+0℄->
->nu_Sigma_f[1℄* SUP[4℄));ve
tdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// 
of[1℄=-1.*SUP[8℄-.5*G_h*(-.458e-1*SUP[8℄+f
al[2℄*(.1491e-2*grid[x+0℄[y+0℄->
->nu_Sigma_f[0℄// var[2℄=T[2℄// 
of[2℄=-.7455e-3*G_h*f
al[2℄*grid[x+0℄[y+0℄->
->nu_Sigma_f[1℄// var[3℄=T[1℄// 
of[3℄=-.7455e-3*G_h*f
al[2℄*grid[x+0℄[y+0℄->
->nu_Sigma_f[0℄// diag=C[2℄// diagmult=1+.2290e-1*G_h/******************/// Row for EQ C[2℄ = SUP[8℄+.5*G_h*(-.458e-1*C[2℄+f
al[2℄*(.1491e-2*nu_Sigma_f[1℄*T[1℄+.1491e-2// Variables represented by this insertion://[1, T[2℄, T[1℄℄// The diagonal element is set to:// 1+.2290e-1*G_h ROW_POS = X_st + y * ROWLEN * P_SIZE + 1 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat stru
ture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 1;matrixdr_ADDzero(COL_POS);265
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al and Computer EngineeringCOL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 3;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 4;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1 + .2290e-1 * G_h;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;VALUE =-.7455e-3 * G_h * f
al[2℄ * grid[x + 0℄[y + 0℄->
->nu_Sigma_f[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-.7455e-3 * G_h * f
al[2℄ * grid[x + 0℄[y + 0℄->
->nu_Sigma_f[0℄;matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);VALUE =1. * SUP[8℄ + .5 * G_h * (-.458e-1 * SUP[8℄ +f
al[2℄ * (.1491e-2 *grid[x + 0℄[y +0℄->
->nu_Sigma_f[0℄* SUP[1℄ + .1491e-2 * grid[x +0℄[y + 0℄->
->nu_Sigma_f[1℄* SUP[4℄));ve
tdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// 
of[1℄=-1.*SUP[9℄-.5*G_h*(-.167*SUP[9℄+f
al[2℄*(.1316e-2*grid[x+0℄[y+0℄->
->nu_Sigma_f[0℄*SU// var[2℄=T[2℄// 
of[2℄=-.6580e-3*G_h*f
al[2℄*grid[x+0℄[y+0℄->
->nu_Sigma_f[1℄// var[3℄=T[1℄// 
of[3℄=-.6580e-3*G_h*f
al[2℄*grid[x+0℄[y+0℄->
->nu_Sigma_f[0℄// diag=C[3℄// diagmult=1+.835e-1*G_h/******************/// Row for EQ C[3℄ = SUP[9℄+.5*G_h*(-.167*C[3℄+f
al[2℄*(.1316e-2*nu_Sigma_f[1℄*T[1℄+.1316e-2*nu// Variables represented by this insertion://[1, T[2℄, T[1℄℄// The diagonal element is set to:// 1+.835e-1*G_h ROW_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat stru
ture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);266



PhD thesis D. Gilbert M
Master - Ele
tri
al and Computer EngineeringCOL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1 + .835e-1 * G_h;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;VALUE =-.6580e-3 * G_h * f
al[2℄ * grid[x + 0℄[y + 0℄->
->nu_Sigma_f[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-.6580e-3 * G_h * f
al[2℄ * grid[x + 0℄[y + 0℄->
->nu_Sigma_f[0℄;matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);VALUE =1. * SUP[9℄ + .5 * G_h * (-.167 * SUP[9℄ +f
al[2℄ * (.1316e-2 *grid[x + 0℄[y +0℄->
->nu_Sigma_f[0℄* SUP[1℄ + .1316e-2 * grid[x +0℄[y + 0℄->
->nu_Sigma_f[1℄* SUP[4℄));ve
tdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// 
of[1℄=-1.*SUP[10℄-.5*G_h*(-.448*SUP[10℄+f
al[2℄*(.2849e-2*grid[x+0℄[y+0℄->
->nu_Sigma_f[0℄*// var[2℄=T[2℄// 
of[2℄=-.14245e-2*G_h*f
al[2℄*grid[x+0℄[y+0℄->
->nu_Sigma_f[1℄// var[3℄=T[1℄// 
of[3℄=-.14245e-2*G_h*f
al[2℄*grid[x+0℄[y+0℄->
->nu_Sigma_f[0℄// diag=C[4℄// diagmult=1+.2240*G_h/******************/// Row for EQ C[4℄ = SUP[10℄+.5*G_h*(-.448*C[4℄+f
al[2℄*(.2849e-2*nu_Sigma_f[1℄*T[1℄+.2849e-2*n// Variables represented by this insertion://[1, T[2℄, T[1℄℄// The diagonal element is set to:// 1+.2240*G_h ROW_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat stru
ture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);267
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al and Computer EngineeringCOL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1 + .2240 * G_h;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;VALUE =-.14245e-2 * G_h * f
al[2℄ * grid[x + 0℄[y + 0℄->
->nu_Sigma_f[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-.14245e-2 * G_h * f
al[2℄ * grid[x + 0℄[y + 0℄->
->nu_Sigma_f[0℄;matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);VALUE =1. * SUP[10℄ + .5 * G_h * (-.448 * SUP[10℄ +f
al[2℄ * (.2849e-2 *grid[x +0℄[y +0℄->
->nu_Sigma_f[0℄ *SUP[1℄ +.2849e-2 *grid[x +0℄[y +0℄->
->nu_Sigma_f[1℄ * SUP[4℄));ve
tdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// 
of[1℄=-1.*SUP[11℄-.5*G_h*(-2.02*SUP[11℄+f
al[2℄*(.896e-3*grid[x+0℄[y+0℄->
->nu_Sigma_f[0℄*S// var[2℄=T[2℄// 
of[2℄=-.4480e-3*G_h*f
al[2℄*grid[x+0℄[y+0℄->
->nu_Sigma_f[1℄// var[3℄=T[1℄// 
of[3℄=-.4480e-3*G_h*f
al[2℄*grid[x+0℄[y+0℄->
->nu_Sigma_f[0℄// diag=C[5℄// diagmult=1+1.010*G_h/******************/// Row for EQ C[5℄ = SUP[11℄+.5*G_h*(-2.02*C[5℄+f
al[2℄*(.896e-3*nu_Sigma_f[1℄*T[1℄+.896e-3*nu_// Variables represented by this insertion://[1, T[2℄, T[1℄℄// The diagonal element is set to:// 1+1.010*G_h ROW_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);268
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ture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1 + 1.010 * G_h;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;VALUE =-.4480e-3 * G_h * f
al[2℄ * grid[x + 0℄[y + 0℄->
->nu_Sigma_f[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-.4480e-3 * G_h * f
al[2℄ * grid[x + 0℄[y + 0℄->
->nu_Sigma_f[0℄;matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);VALUE =1. * SUP[11℄ + .5 * G_h * (-2.02 * SUP[11℄ +f
al[2℄ * (.896e-3 *grid[x +0℄[y +0℄->
->nu_Sigma_f[0℄ *SUP[1℄ +.896e-3 *grid[x +0℄[y +0℄->
->nu_Sigma_f[1℄ * SUP[4℄));ve
tdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// 
of[1℄=-1.*SUP[12℄-.5*G_h*(-4.49*SUP[12℄+f
al[2℄*(.182e-3*grid[x+0℄[y+0℄->
->nu_Sigma_f[0℄*S// var[2℄=T[2℄// 
of[2℄=-.910e-4*G_h*f
al[2℄*grid[x+0℄[y+0℄->
->nu_Sigma_f[1℄// var[3℄=T[1℄// 
of[3℄=-.910e-4*G_h*f
al[2℄*grid[x+0℄[y+0℄->
->nu_Sigma_f[0℄// diag=C[6℄// diagmult=1+2.245*G_h/******************/// Row for EQ C[6℄ = SUP[12℄+.5*G_h*(-4.49*C[6℄+f
al[2℄*(.182e-3*nu_Sigma_f[1℄*T[1℄+.182e-3*nu_// Variables represented by this insertion:269
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Master - Ele
tri
al and Computer Engineering//[1, T[2℄, T[1℄℄// The diagonal element is set to:// 1+2.245*G_h ROW_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat stru
ture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1 + 2.245 * G_h;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;VALUE =-.910e-4 * G_h * f
al[2℄ * grid[x + 0℄[y + 0℄->
->nu_Sigma_f[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-.910e-4 * G_h * f
al[2℄ * grid[x + 0℄[y + 0℄->
->nu_Sigma_f[0℄;matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);VALUE =1. * SUP[12℄ + .5 * G_h * (-4.49 * SUP[12℄ +f
al[2℄ * (.182e-3 *grid[x +0℄[y +0℄->
->nu_Sigma_f[0℄ *SUP[1℄ +.182e-3 *grid[x +0℄[y +0℄->
->nu_Sigma_f[1℄ * SUP[4℄));ve
tdr_wr(bid, ROW_POS, VALUE);} // ***** end_if((grid[x℄[y℄->
ell_id=key))} // ***** end_for(x)// The mode is 2//*******************Call made to ring:-
orners()if (MAT_ROW_fin[Mid℄[X_st℄ == 0) {y = 0;x = 0; 270
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al and Computer Engineeringif (rs_ptr_get(idx, posx + (x - .5) * dx, +posy + (y - .5) * dy, 1)== NULL) {// ********************* Call made to gen:-refle
t// There are no maps beyond this boarder so refle
t vars// refle
tion for [C[6℄, T[2℄, T1[2℄, T2[2℄℄y = 0;x = 0;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 1 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 2 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 3 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 4 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 5 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 6 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 7 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;271
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al and Computer Engineeringmatrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 8 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 9 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 10 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 11 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);} else {// ********************* Call made to ring:-interp_loop// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + 1 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 3, 1, 
ol, weight, ROW_POS);272
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al and Computer Engineeringfor (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 4, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 5, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 6, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),273
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ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + 8 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + 9 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + 10 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + 11 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);}y = 0;x = dimx + 1;if (rs_ptr_get(idx, posx + (x - .5) * dx, +posy + (y - .5) * dy, 1)== NULL) {// ********************* Call made to gen:-refle
t// There are no maps beyond this boarder so refle
t vars274
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tion for [C[6℄, T[2℄, T1[2℄, T2[2℄℄y = 0;x = dimx + 1;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 1 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 2 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 3 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 4 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 5 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 6 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 7 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 8 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);275
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tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 9 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 10 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 11 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);} else {// ********************* Call made to ring:-interp_loop// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + 1 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 3, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);276
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al and Computer Engineering// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 4, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 5, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 6, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);277
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tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + 8 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + 9 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + 10 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + 11 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);}y = dimy + 1;x = 0;if (rs_ptr_get(idx, posx + (x - .5) * dx, +posy + (y - .5) * dy, 1)== NULL) {// ********************* Call made to gen:-refle
t// There are no maps beyond this boarder so refle
t vars// refle
tion for [C[6℄, T[2℄, T1[2℄, T2[2℄℄y = dimy + 1;x = 0;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;278
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al and Computer Engineeringmatrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 1 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 2 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 3 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 4 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 5 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 6 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 7 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 8 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);279
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al and Computer Engineeringmatrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 9 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 10 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 11 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);} else {// ********************* Call made to ring:-interp_loop// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + 1 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 3, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;280
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al and Computer Engineeringmatrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 4, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 5, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 6, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0; 281
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al and Computer EngineeringROW_POS = X_st + 8 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + 9 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + 10 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + 11 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);}y = dimy + 1;x = dimx + 1;if (rs_ptr_get(idx, posx + (x - .5) * dx, +posy + (y - .5) * dy, 1)== NULL) {// ********************* Call made to gen:-refle
t// There are no maps beyond this boarder so refle
t vars// refle
tion for [C[6℄, T[2℄, T1[2℄, T2[2℄℄y = dimy + 1;x = dimx + 1;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);282
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al and Computer Engineeringmatrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 1 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 2 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 3 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 4 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 5 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 6 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 7 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 8 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 9 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);283
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tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 10 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 11 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);} else {// ********************* Call made to ring:-interp_loop// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + 1 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 3, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),284
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ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 5, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 6, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + 8 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,285
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al and Computer Engineering(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + 9 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + 10 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + 11 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);}}//*******************Call made to ring:-make()/*------------------ East border ----------------------*/for (xyindex = 1; xyindex <= dimy; xyindex++) {
ons_method = 1;if (grid[dimx℄[xyindex℄->
ell_id == key)if (grid[dimx + 1℄[xyindex℄->Be == 0) {// ********************* Call made to gen:-refle
t// There are no maps beyond this boarder so refle
t vars// refle
tion for [C[6℄, T[2℄, T1[2℄, T2[2℄℄y = xyindex;x = dimx + 1;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);286
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tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 1 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 2 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 3 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 4 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 5 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 6 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 7 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 8 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 9 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);287
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al and Computer EngineeringROW_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 10 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 11 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);} else if (grid[dimx + 1℄[xyindex℄->Be == 1) {// ********************* Call made to ring:-interp_loop// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + 1 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 3, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 4, 1, 
ol, weight, ROW_POS);288
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al and Computer Engineeringfor (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 5, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 6, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + 8 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),289
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al and Computer Engineering(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + 9 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + 10 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + 11 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);} else if (grid[dimx + 1℄[xyindex℄->Be > 1) {
ons_method = grid[dimx + 1℄[xyindex℄->Be;// ************* ring:-
onserve// LAPL_VARS1:={LAPL(1/3/Sigma_tr[1℄*T[1℄), LAPL(1/3/Sigma_tr[2℄*T[2℄)}// PDEs_arg:=[[T[1℄ = sup[T[1℄,3℄+G_h/G_ho*sup[T1[1℄,3℄+G_h^2/G_ho^2*sup[T2[1℄,3℄+.6666666667*G// ************* ring:-
onserve_shape_
ode 
alled for T[1℄// the geometri
 position for the row is based on little_phi*y = xyindex;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// ************* ring:-
onserve_exa
t_big_PHI_W_E for T[1℄// set fy, the floating point x position to the E/W edgey = xyindex;fx = posx + dx * (dimx + .1);o
p = (void *) &grid[dimx℄[y℄;rs_exa
t_PHI_WE(idx, fx, posy + (xyindex - 1) * dy,dy, PHIs, PHI, PHIsx, PHIsy, fr,(void **) 
ps, (void **) 
p, &unfr, o
p);reje
t_fr = 100; // must be initialized to zero to work290
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al and Computer Engineeringi = 0;while (fr[i℄ >= 0) {// Computing far 
onstant 1/Sigma_tr[1℄
on = 1.0 * 1 / 
p[i℄->
->Sigma_tr[0℄;// Computing far 
onstant 1/Sigma_tr[1℄
ons = 1.0 * 1 / 
ps[i℄->
->Sigma_tr[0℄;// disabled reje
t_fr+=dy*fr[i℄*Abs(
on-
ons)/(Abs(
on)+Abs(
ons));i++;if (i > MAX_R)abort();}if (
ons_method != 3)reje
t_fr = 100;if (reje
t_fr < G_RTHRESH) {printf("r(%g)", reje
t_fr);} else {i = 0;while (fr[i℄ >= 0) {// Computing far 
onstant 1/Sigma_tr[1℄
on = 1.0 * 1 / 
p[i℄->
->Sigma_tr[0℄;// Computing far 
onstant 1/Sigma_tr[1℄
ons = 1.0 * 1 / 
ps[i℄->
->Sigma_tr[0℄;matrixdr_ADD(PHI[i℄ + 6, fr[i℄ * (
on + 
ons) / 2);matrixdr_ADD(PHIs[i℄ + 6, -fr[i℄ * (
on + 
ons) / 2);i++;}}// ************* ring:-
onserve_shape_small_PHI_W_E for T[1℄y = xyindex;x = dimx;// Computing far 
onstant 1/Sigma_tr[1℄
on = 1.0 * 1 / grid[x + 0℄[y + 0℄->
->Sigma_tr[0℄;// Computing far 
onstant 1/Sigma_tr[1℄
ons = 1.0 * 1 / grid[x + 1℄[y + 0℄->
->Sigma_tr[0℄;if (reje
t_fr > G_RTHRESH) {COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_ADD(COL_POS, (
on + 
ons) * dy / dx / 2);}x = dimx + 1;if (reje
t_fr < G_RTHRESH) {rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight,ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, (
on + 
ons) * dy / dx / 2 * weight[i℄);}COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_ADD(COL_POS, -(
on + 
ons) * dy / dx / 2);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ************* ring:-
onserve_shape_
ode 
alled for T[2℄// the geometri
 position for the row is based on little_phi*y = xyindex;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// ************* ring:-
onserve_exa
t_big_PHI_W_E for T[2℄// set fy, the floating point x position to the E/W edgey = xyindex;fx = posx + dx * (dimx + .1);o
p = (void *) &grid[dimx℄[y℄;rs_exa
t_PHI_WE(idx, fx, posy + (xyindex - 1) * dy,dy, PHIs, PHI, PHIsx, PHIsy, fr,291
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ps, (void **) 
p, &unfr, o
p);reje
t_fr = 100; // must be initialized to zero to worki = 0;while (fr[i℄ >= 0) {// Computing far 
onstant 1/Sigma_tr[2℄
on = 1.0 * 1 / 
p[i℄->
->Sigma_tr[1℄;// Computing far 
onstant 1/Sigma_tr[2℄
ons = 1.0 * 1 / 
ps[i℄->
->Sigma_tr[1℄;// disabled reje
t_fr+=dy*fr[i℄*Abs(
on-
ons)/(Abs(
on)+Abs(
ons));i++;if (i > MAX_R)abort();}if (
ons_method != 3)reje
t_fr = 100;if (reje
t_fr < G_RTHRESH) {printf("r(%g)", reje
t_fr);} else {i = 0;while (fr[i℄ >= 0) {// Computing far 
onstant 1/Sigma_tr[2℄
on = 1.0 * 1 / 
p[i℄->
->Sigma_tr[1℄;// Computing far 
onstant 1/Sigma_tr[2℄
ons = 1.0 * 1 / 
ps[i℄->
->Sigma_tr[1℄;matrixdr_ADD(PHI[i℄ + 7, fr[i℄ * (
on + 
ons) / 2);matrixdr_ADD(PHIs[i℄ + 7, -fr[i℄ * (
on + 
ons) / 2);i++;}}// ************* ring:-
onserve_shape_small_PHI_W_E for T[2℄y = xyindex;x = dimx;// Computing far 
onstant 1/Sigma_tr[2℄
on = 1.0 * 1 / grid[x + 0℄[y + 0℄->
->Sigma_tr[1℄;// Computing far 
onstant 1/Sigma_tr[2℄
ons = 1.0 * 1 / grid[x + 1℄[y + 0℄->
->Sigma_tr[1℄;if (reje
t_fr > G_RTHRESH) {COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_ADD(COL_POS, (
on + 
ons) * dy / dx / 2);}x = dimx + 1;if (reje
t_fr < G_RTHRESH) {rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight,ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, (
on + 
ons) * dy / dx / 2 * weight[i℄);}COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_ADD(COL_POS, -(
on + 
ons) * dy / dx / 2);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);/******************* Call made to ring:-end_fill 
alled ALL_SYMS=[T[2℄, T[1℄℄*/y = xyindex;x = dimx + 1;// Zero Filling stru
ture [C[6℄, T[2℄, T1[2℄, T2[2℄℄// Symbols ex
luded [T[2℄, T[1℄℄ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;292
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al and Computer Engineeringmatrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);} elseabort();}; //******************* end for(xyindex)/*------------------ West border ----------------------*/for (xyindex = 1; xyindex <= dimy; xyindex++) {if (grid[1℄[xyindex℄->
ell_id == key)if (grid[0℄[xyindex℄->Bw == 0) {// ********************* Call made to gen:-refle
t// There are no maps beyond this boarder so refle
t vars// refle
tion for [C[6℄, T[2℄, T1[2℄, T2[2℄℄y = xyindex;x = 0;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;293
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al and Computer Engineeringmatrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 1 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 2 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 3 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 4 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 5 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 6 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 7 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 8 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 9 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);294
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al and Computer Engineeringmatrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 10 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 11 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);} else if (grid[0℄[xyindex℄->Bw == 1) {// ********************* Call made to ring:-interp_loop// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + 1 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 3, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 4, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);295
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al and Computer Engineeringmatrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 5, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 6, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + 8 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)296
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ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + 9 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + 10 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + 11 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);} else if (grid[0℄[xyindex℄->Bw > 1) {
ons_method = grid[0℄[xyindex℄->Bw;// ************* ring:-
onserve// LAPL_VARS1:={LAPL(1/3/Sigma_tr[1℄*T[1℄), LAPL(1/3/Sigma_tr[2℄*T[2℄)}// PDEs_arg:=[[T[1℄ = sup[T[1℄,3℄+G_h/G_ho*sup[T1[1℄,3℄+G_h^2/G_ho^2*sup[T2[1℄,3℄+.6666666667*G// ************* ring:-
onserve_shape_
ode 
alled for T[1℄// the geometri
 position for the row is based on little_phi*y = xyindex;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// ************* ring:-
onserve_exa
t_big_PHI_W_E for T[1℄// set fy, the floating point x position to the E/W edgey = xyindex;fx = posx - .1 * dx;o
p = (void *) &grid[1℄[y℄;rs_exa
t_PHI_WE(idx, fx, posy + (xyindex - 1) * dy,dy, PHIs, PHI, PHIsx, PHIsy, fr,(void **) 
ps, (void **) 
p, &unfr, o
p);reje
t_fr = 100; // must be initialized to zero to worki = 0;while (fr[i℄ >= 0) {297
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onstant 1/Sigma_tr[1℄
on = 1.0 * 1 / 
p[i℄->
->Sigma_tr[0℄;// Computing far 
onstant 1/Sigma_tr[1℄
ons = 1.0 * 1 / 
ps[i℄->
->Sigma_tr[0℄;// disabled reje
t_fr+=dy*fr[i℄*Abs(
on-
ons)/(Abs(
on)+Abs(
ons));i++;if (i > MAX_R)abort();}if (
ons_method != 3)reje
t_fr = 100;if (reje
t_fr < G_RTHRESH) {printf("r(%g)", reje
t_fr);} else {i = 0;while (fr[i℄ >= 0) {// Computing far 
onstant 1/Sigma_tr[1℄
on = 1.0 * 1 / 
p[i℄->
->Sigma_tr[0℄;// Computing far 
onstant 1/Sigma_tr[1℄
ons = 1.0 * 1 / 
ps[i℄->
->Sigma_tr[0℄;matrixdr_ADD(PHI[i℄ + 6, fr[i℄ * (
on + 
ons) / 2);matrixdr_ADD(PHIs[i℄ + 6, -fr[i℄ * (
on + 
ons) / 2);i++;}}// ************* ring:-
onserve_shape_small_PHI_W_E for T[1℄y = xyindex;x = 1;// Computing far 
onstant 1/Sigma_tr[1℄
on = 1.0 * 1 / grid[x + 0℄[y + 0℄->
->Sigma_tr[0℄;// Computing far 
onstant 1/Sigma_tr[1℄
ons = 1.0 * 1 / grid[x + -1℄[y + 0℄->
->Sigma_tr[0℄;if (reje
t_fr > G_RTHRESH) {COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_ADD(COL_POS, (
on + 
ons) * dy / dx / 2);}x = 0;if (reje
t_fr < G_RTHRESH) {rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, 
ol, weight,ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, (
on + 
ons) * dy / dx / 2 * weight[i℄);}COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_ADD(COL_POS, -(
on + 
ons) * dy / dx / 2);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);// ************* ring:-
onserve_shape_
ode 
alled for T[2℄// the geometri
 position for the row is based on little_phi*y = xyindex;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// ************* ring:-
onserve_exa
t_big_PHI_W_E for T[2℄// set fy, the floating point x position to the E/W edgey = xyindex;fx = posx - .1 * dx;o
p = (void *) &grid[1℄[y℄;rs_exa
t_PHI_WE(idx, fx, posy + (xyindex - 1) * dy,dy, PHIs, PHI, PHIsx, PHIsy, fr,(void **) 
ps, (void **) 
p, &unfr, o
p);reje
t_fr = 100; // must be initialized to zero to work298
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al and Computer Engineeringi = 0;while (fr[i℄ >= 0) {// Computing far 
onstant 1/Sigma_tr[2℄
on = 1.0 * 1 / 
p[i℄->
->Sigma_tr[1℄;// Computing far 
onstant 1/Sigma_tr[2℄
ons = 1.0 * 1 / 
ps[i℄->
->Sigma_tr[1℄;// disabled reje
t_fr+=dy*fr[i℄*Abs(
on-
ons)/(Abs(
on)+Abs(
ons));i++;if (i > MAX_R)abort();}if (
ons_method != 3)reje
t_fr = 100;if (reje
t_fr < G_RTHRESH) {printf("r(%g)", reje
t_fr);} else {i = 0;while (fr[i℄ >= 0) {// Computing far 
onstant 1/Sigma_tr[2℄
on = 1.0 * 1 / 
p[i℄->
->Sigma_tr[1℄;// Computing far 
onstant 1/Sigma_tr[2℄
ons = 1.0 * 1 / 
ps[i℄->
->Sigma_tr[1℄;matrixdr_ADD(PHI[i℄ + 7, fr[i℄ * (
on + 
ons) / 2);matrixdr_ADD(PHIs[i℄ + 7, -fr[i℄ * (
on + 
ons) / 2);i++;}}// ************* ring:-
onserve_shape_small_PHI_W_E for T[2℄y = xyindex;x = 1;// Computing far 
onstant 1/Sigma_tr[2℄
on = 1.0 * 1 / grid[x + 0℄[y + 0℄->
->Sigma_tr[1℄;// Computing far 
onstant 1/Sigma_tr[2℄
ons = 1.0 * 1 / grid[x + -1℄[y + 0℄->
->Sigma_tr[1℄;if (reje
t_fr > G_RTHRESH) {COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_ADD(COL_POS, (
on + 
ons) * dy / dx / 2);}x = 0;if (reje
t_fr < G_RTHRESH) {rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, 
ol, weight,ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(
ol[i℄, (
on + 
ons) * dy / dx / 2 * weight[i℄);}COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_ADD(COL_POS, -(
on + 
ons) * dy / dx / 2);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0);/******************* Call made to ring:-end_fill 
alled ALL_SYMS=[T[2℄, T[1℄℄*/y = xyindex;x = 0;// Zero Filling stru
ture [C[6℄, T[2℄, T1[2℄, T2[2℄℄// Symbols ex
luded [T[2℄, T[1℄℄ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);299
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al and Computer Engineeringmatrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);ve
tdr_wr(bid, ROW_POS, 0.);} elseabort();}; //******************* end for(xyindex)/*------------------ North border ----------------------*/...
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