Final Exam 2001 - Solution

La. Because D has a much lower absorption cross section than H. .. much better whence of surviving the slowing down process.

Boron is a good abserber, ... safe to assume negligible scattering (no buildup).

 $\frac{I(x) = 0.001 = e^{-2a x}}{I(0)}$ $\therefore x = \frac{\ln(0.001)}{E_{0}} + \frac{4.91}{103}$

= 0.0671cm.

2 Validity of Fick's Law

We re-evaluate each assumption in turn:

- Infinite medium. This assumption was necessary to allow integration over all space but flux contributions are negligible beyond a few mean free paths due to the factor, $e^{-\sum_{t} r}$. Thus as long as we are at least a few mean free paths from the reactor extremities, all is okay. Corrections can be made at the reactor surfaces as shown later in this chapter.
- Uniform medium. A non-uniform medium $(\Sigma_S = \Sigma_S(\mathbf{r}))$ requires a re-evaluation of the derivation of Fick's Law. Now the interaction rate, $\Sigma_S \phi$, is a function of space due to both ϕ and Σ variations in space. Detailed calculations show, however, that the extra current (ie. scattering) contributions caused by a locally larger Σ_S are exactly cancelled by larger attenuations $((e^{-\sum_t \mathbf{r}} e^{-(\sum_s + \sum_a)\mathbf{r}})$ iff (if and only if) $\Sigma_S >> \sum_a \text{ or } \sum_s / \sum_t = \text{constant}$. It should be noted however that $\Sigma_S(\mathbf{r})$ can lead to large values of $\frac{\partial \phi}{\partial \mathbf{r}}(\mathbf{r})$ which violates assumption (e).
- Sources. As per assumption (a), we can get away with sources as long as they are more than a few mean free paths away.
- Isotropic scattering. Anisotropic scattering can be corrected for by detailed considerations of transport theory in which D is re-evaluated:

$$\frac{\Sigma_{s}}{2} \sqrt{\frac{D}{\Sigma_{a}}} \ln \left[\frac{\Sigma_{t} + \sqrt{\Sigma_{a}/D}}{\Sigma_{t} - \sqrt{\Sigma_{a}/D}} \right] = \frac{1 + 3D\Sigma_{s} \overline{\mu}}{1 + 3D\Sigma_{s} \overline{\mu}}$$

Where

 $\overline{\mu} = \cos\theta$ (average of the scattering angle in the lab system)

$$=\frac{2}{3A}$$

Expanding the equation in D, above:

$$D = \frac{1}{3\Sigma_{t} (1 - \overline{\mu})(1 - 4\Sigma_{a}/5\Sigma_{t} + ...)}$$

$$= \frac{1}{3\Sigma_{t} (1 - \overline{\mu})} \text{ for } \Sigma_{a}/\Sigma_{t} << 1$$

0

 $\therefore D = \frac{\lambda_{tr}}{3}$ as previously defined in the supplemental material at the end of the chapter on *Basic Definitions and Perspectives*

Slowly varying flux. Further expansions of φ are necessary to account for large variations in φ (r). It can be shown that 2^{nd} order terms cancel and that third order terms are not

important beyond a few mean paths. Therefore, provided $\frac{d^2 \varphi}{d r^2}(r)$ is small over a few

mean free paths, all is okay. Large variations in ϕ occur when Σ_a is large (compared to Σ_s).

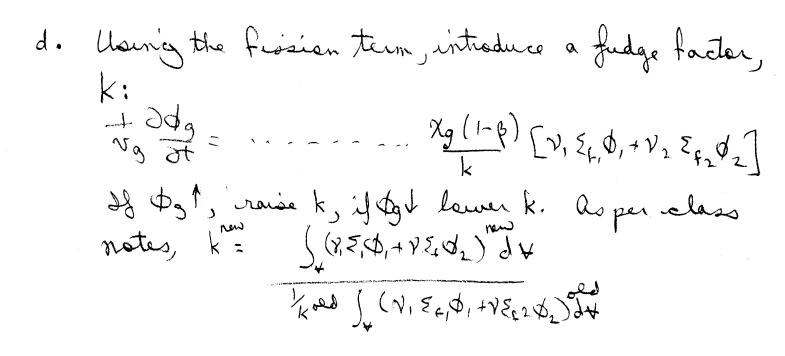
Time - dependent flux. The time it takes a slow neutron to traverse 3 mean free paths (in cm.) is

$$\Delta t \sim \frac{3\lambda_s}{v} \sim \frac{3x1cm}{2x10^5 cm/s} \sim 1.5x10^{-5} s.$$

If is changed at 10%/s (a high rate), then

$$\frac{\Delta \phi}{\phi} = \frac{\Delta \phi/\phi}{\Delta t} \times \Delta t \sim 0.1 \Delta t = 1.5 \times 10^{-6}.$$

This is a very small fractional change of flux amplitude in the time it takes a neutron to move a significant physical distance.


[10 marks] no apseatter $\frac{1}{\sqrt{3}} \frac{\partial \phi_{1}}{\partial t} = \sqrt{2} \cdot D_{1} \sqrt{4} \cdot - \sum_{\alpha_{1}} \phi_{1} - \sum_{\beta_{2}} \phi_{1} + \sum_{\beta_{1}} \phi_{1} + \sum_{\beta_{2}} \phi_{2} + \sum_{\beta_{1}} \frac{\partial \phi_{1}}{\partial t} = \sqrt{2} \cdot D_{2} \sqrt{4} \cdot - \sum_{\alpha_{1}} \frac{\partial \phi_{1}}{\partial t} - \sum_{\beta_{1}} \frac{\partial \phi_{2}}{\partial t} + \sum_{\beta_{1}} \frac{\partial \phi_{2}}{\partial$ Typically $\leq_{3,2} \approx_0$ (no thermal births)

Typically $\leq_{3,2} \approx_0$ (is $\leq_{5,2} \neq_{5,22}$ cancel.

b. Term labelled (1) above are the effective

- sources of thermals (slowing down from faut)
- c. Termo labelled 2) above are the effective sources of fast neutrons (X, =0 & thefast frasións, v, Ep, Ø, are ~ 3% of the thermal fraciens,
- The energy separation is too great for upscatter of any appreciable extent.
- e. The poisons affects the Za terms primarily. and the changes in Zaz is the more significant since it is the imore significant Za. Xe has a large thermal Za.

4. [10 marks] a. $\frac{1}{\sqrt{3t}} = \sqrt{2}$, $\sqrt{2}$, $-\frac{1}{2}$, $\sqrt{2}$, $-\frac{1}{2}$, $\sqrt{2}$, $+\frac{1}{2}$, $\sqrt{2}$, $\sqrt{2}$ + X1 (1-8) [>1 \(\xi_1 \xi_1 \xi_2 \xi_2 \phi_2 \) + X1 \(\xi_1 $\frac{1}{\sqrt{2}} \frac{\partial \phi_{2}}{\partial t} = \sqrt{10200} - \frac{2}{2020} - \frac{1}{200} + \frac{1}{200}$ Es 2, = 0 (noupscatter) => Es = 8 sez Sgext = 0 (smiplienty) b. $\chi_9 \simeq \chi_9^c$ Since energy group structure is coarse. $\chi_2^c = \chi_2 = 0, \quad \chi_1^c = 1$ knergy of precursor neutrons is lower than prompt neutrons but stelpin group 1. c. Sub 3 into 0 00 to see! $\chi_{g}(-\beta)$ [] + χ_{g} [] ξ_{g} Since in Steady State 3: 'X', C' = B' []. Hence & terms cancel.

e. Using the absorption term, we envision a control rod that add absorption when inserted into the reactor.

ie Eag => Eag + Eag (Z)

where 7= fraction inserted, (0,1).

Devise a controller based on deviation

from a flux wetpoint:

Z= a + b (\$measured \$ setpt.) + c d\$meas. Need to experiment to find a, b, te. PD

controller

Could also use such a controller to vary kin(d).

$$\mathcal{D} \frac{dN_1}{dt} = -\lambda_1 N_1 \implies N_1(t) = N_1(0) e^{-\lambda_1 t}$$

$$\frac{\partial N_2}{\partial t} = \lambda_1 N_1 - \lambda_2 N_2$$

Since $\lambda_2 >> \lambda_1$, N, will not change much in the time that N2 changes. Thus we can consider $\lambda_1 N_1 \sim$ constant in 2 and that N_2 quickly comes to a pseudo-equilibrium with N_1 , ie:

$$\frac{\partial N_2}{\partial t} \sim 0 = \lambda_1 N_1 - \lambda_2 N_2$$

$$\frac{\partial N_2}{\partial t} = \frac{\lambda_1 N_1}{\lambda_2} = \frac{\lambda_1 N_1(0) e^{-\lambda_1 t}}{\lambda_2}$$
[10]

or from
$$N_2(t) = \frac{1}{\lambda_1}N_1(0)$$
 $\left[e^{-\lambda_1 t} - e^{-\lambda_2 t}\right]$
 $= \sum_{i=1}^{N_2(t)} N_2(t) = \frac{1}{\lambda_1}N_1(0) e^{-\lambda_1 t}$ for $\lambda_2 > > \lambda_1$

Trial Sol'n

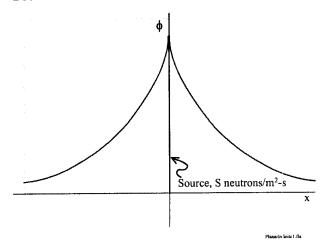
$$N_{2} = Ae^{-\lambda_{1}t} + Ce^{-\lambda_{2}t}, \quad N_{2}(0) = 0$$

$$A_{1}e^{-\lambda_{1}t} - C\lambda_{2}e^{-\lambda_{2}t} = \lambda_{1}N_{1}(0)e^{-\lambda_{1}t} - \lambda_{2}Ae^{-\lambda_{1}t} + \lambda_{2}Ce^{-\lambda_{2}t}$$

$$A_{1} = \frac{\lambda_{1}N_{1}(0)}{\lambda_{2} - \lambda_{1}}, \quad C = -A$$

Reactor Physics: The Diffusion of Neutrons

We have previously shown the Steady State Diffusion Equation to be


$$0 = S(\overline{r}) - \Sigma_a(\overline{r}) \phi(\overline{r}) + D \nabla^2 \phi(\overline{r})$$

Defining

$$L^2 = \frac{D}{\Sigma_a} \equiv [cm^2]; L \equiv \text{diffusion length}$$

$$\nabla^2 \phi - \frac{1}{L_2} \phi = -\frac{S}{D} \tag{10.1}$$

10.1 Infinite Planar Source

$$\delta(x) = 0, x \neq 0$$

$$\int_{a}^{b} \delta(x) dx = 1, \ a < 0 < b$$

$$= 0 \text{ otherwise}$$

Figure 8 Flux distribution for a planar source

Equation (10.1) reduces to:

$$\frac{1}{\phi} \frac{d^2 \phi(x)}{dx^2} - \frac{1}{L^2} \phi(x) = -\frac{S\delta(x)}{D}$$
 (10.2)

and for $x \neq 0$

$$\frac{1}{\phi} \frac{d^2 \phi(x)}{dx^2} - \frac{\phi(x)}{L^2} = 0$$
 (10.3)

Consider the planar source (as shown in figure 9)

$$\lim_{x \to 0} \underbrace{J(x)}_{\text{current from either end}} = \frac{S}{2}$$

(10.4)

The solution to Equation (10.3) has the following form:

$$\phi(x) = A e^{-x/L} + C e^{x/L}$$
 (10.5)

For x > 0, C = 0, otherwise ϕ is non-finite as $x \to \infty$

∴
$$\phi(x) = A e^{-x/L}, x > 0$$
 (10.6)

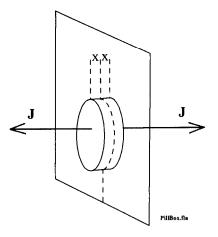


Figure 9 Current "pill box"

From Fick's Law
$$J|_{0} = -D\frac{d\phi}{dx}|_{0} = +\frac{DA}{L}e^{-x/L}|_{0} = \frac{DA}{L} = \frac{S}{2}$$

$$\therefore A = \frac{SL}{2D}$$

$$\therefore \phi(x) = \frac{SL}{2D} e^{-x/L} \qquad x > 0$$
 (10.7)

Similarly for x < 0, giving $\phi(x) = \frac{SL}{2D} e^{-|x|/L}$. Recall that this not valid at or near x = 0.

This solution should make physical sense to you. The flux decays exponentially away from the source as it is absorbed by the medium. This agrees with the beam absorption laws that we have previously derived.

b.) Beam attenuation: \$ = \$20 - \$1x cf SLe TD

does not consider multiple skatters (ie diffusion like provess)

7. (15 marks)

a. (4 marks)

$$-D_{1}^{c} \nabla^{2} \phi_{1}^{c} + \sum_{R_{1}}^{c} \phi_{1}^{c} = \frac{1}{K} \left[\gamma_{1} \sum_{F_{1}}^{c} \phi_{1}^{c} + \gamma_{2} \sum_{F_{2}}^{c} \phi_{2}^{c} \right]$$

$$-D_{2}^{c} \nabla^{2} \phi_{2}^{c} + \sum_{\alpha}^{c} \phi_{2}^{c} = \sum_{S_{12}}^{c} \phi_{1}^{c}$$

$$-D_{1}^{R} \nabla^{2} \phi_{1}^{R} + \sum_{R_{1}}^{R} \phi_{1}^{R} = 0$$

$$-D_{2}^{R} \nabla^{2} \phi_{2}^{R} + \sum_{\alpha}^{R} \phi_{2}^{R} = \sum_{S_{12}}^{R} \phi_{1}^{R}$$

b. (4 monks)

$$\phi_{i}^{R}(\mathcal{A}_{2}) = 0 \qquad i = 1, 2$$

$$\phi_{i}^{C}(\mathcal{A}_{2}) = \phi_{i}^{R}(\mathcal{A}_{2})$$

$$\sigma_{i}^{C}(\mathcal{A}_{2}) = \sigma_{i}^{R}(\mathcal{A}_{2})$$

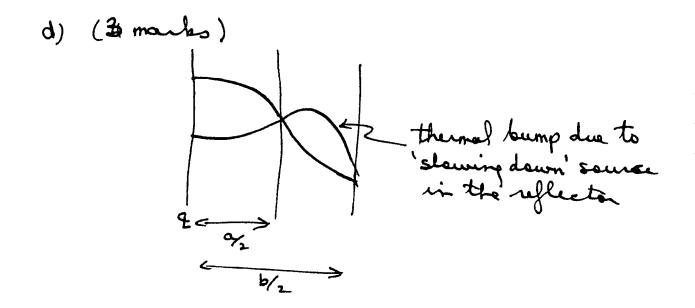
$$\sigma_{i}^{C}(\mathcal{A}_{2}) = \sigma_{i}^{R}(\mathcal{A}_{2})$$
(ie $D_{i}^{C}\nabla\phi_{i}^{C}(\mathcal{A}_{2}) = D_{i}^{R}\nabla\phi_{i}^{R}(\mathcal{A}_{2})$)

Symmetry or $\nabla\phi_{i}^{C}(0) = 0$

c. (4 marks)

(or whatever, Bessel?)

Try solutions of Joen: $\phi_i^* = A_i \cos \mu_i r + C_i \cosh \lambda_i r$ 4 subst. into eqn's in (a). This yields 4 egn's


that should allow the calc. of the buckling

Next apply the B.C.'s. The condition $\phi_i^R (92+b) = 0$ should allow you to eliminate one unknown A_i^R or C_i^R for i=1/2.

Symmetry does the same for the scare flux.

This leaves 4 unknowns + 4 interface B.C.

That can be solved (Theoretically) for the 4 unknown. These 4 egn's form the criticality condition.

Thanks to Sinh Nguyen

Triainte te chini rigayen	
#8.	1)no upratter
(a) $\frac{1}{12}\frac{20}{9} = 7.0, 70, - \frac{1}{2}\frac{4}{12}4$	Z501 = 0
	2) no fast fission
$\frac{1}{2002} = \nabla D_2 \nabla \phi_2 - \overline{Z}_{22} \phi_2 + \overline{Z}_{12} \phi_1$	Z41=0
V2 Ot	3) no thermal birth
\sim \sim \sim \sim \sim \sim	$X_{2} = 0 \Rightarrow X_{1} = 1.$ $X_{2}^{C} = 0 \Rightarrow X_{1}^{C} = 1.$
$\frac{2c_i}{9t} = -\lambda_i c_i + \beta_i \frac{7}{2} \frac{7}{4} \frac{1}{2} \Phi_2 \qquad (i=1,2,,N)$	2 0 0 7 7, 12.
$\frac{\partial \overline{L}}{\partial t} = \chi \overline{Z}_{t} \phi_{t} - \lambda_{t} \overline{I}$	ful region only
Ot 112	1 7 8
$\frac{\partial X}{\partial t} = \chi \frac{\partial}{\partial t} + \lambda_1 I - \lambda_1 X + 6 \frac{\lambda_1 X}{2} $	
0+ x 72 2	,
ONL FLN	
$\frac{\partial N_{\uparrow}}{\partial t} = -6^{\dagger} \frac{\partial}{\partial t} \frac{N_{\downarrow}}{V_{\downarrow}}$	1
B.C. for flux: $\phi_g(\tilde{r}_s) = 0$ ractum	
for They; no need	
T.C. $\phi(r, o) = gwen$	
$C_{i}(r, o) = given or = k_{1} \overline{\zeta}_{1} \phi(r, o) /_{\lambda}$	
T(r,v) = o r = s.s	
X(r,0) = 0 or = S.S	
$\frac{N_{i}(r,o) = known}{(in t) + in t}$	
Discretization (see later)	
6) For S.S. flux Ci takes no part discard them	
V.D.D.D Zn 4, + 22202 = 0	
D. D2DD2 - Zaco + Zs12 = 0.	, process
T, X, Ng remain.	
Ci - discard (see question 4c)	
X after min -> hrs will change Zaz, so calculate	if every 5 min or
and update flux equation.	V
Ne dipletes after his - days, will affect Z, Za, n	s calculate it
every hour and update flux equation.	

c) For fast transient (up to few seconds):
Ignore Ce, I, X, Nf as in a few seconds they don't change considerably
Solve transvent equation flux will At ~ usee - more.
· ·
d) For short term transvent (up to few minutes):
d) For short term transvent (up to few minutes): Solve flux and precursors only. I,X, Ny don't change much
When flux reaches S.S. > mitch to S.S. versions or set vg = 1
and rolve precursor equations. We can either update SS. flux
equation or use transient noll time step of precursor eq. provided
setting rg = 1 or using F-factor to slow down flux transvent =)
no los of accuracy.
e) For I, Xe-transient:
Use S.S. flux version, rancre precursor eg. as flux reaches
Use S.S. flux version, ognore precursor eq., as flux reaches SS. in very short time. We S.S. flux to calculate I&X,
and then every 10 min, update the flux eq.
We can truck fuel depletion, but do it every hour or so
and then update the flux equation.

Thanks to Sinh Nguyen Use the governing equation given in 8) $\frac{D}{\Lambda^2} \left(\phi_W - 2\phi_P + \phi_E \right)$ $\frac{\Phi_{p}^{++\Delta t} - \Phi_{p}^{+}}{\Delta t} = \frac{D_{1}}{\Delta^{2}} \left(\Phi_{W}^{++\Delta t} + \Phi_{E}^{+} \right) - \frac{20}{\Delta^{2}} \Phi_{P}^{++\Delta t} + \frac{1}{10} P_{2} = \frac{1}{2} \Phi_{P}^{+} + \frac{1}{10} \Phi_{P}^{+} + \frac{1}{10} P_{2} = \frac{1}{2} \Phi_{P}^{+} + \frac{1}{10} P_{2}^{+} + \frac{1}{10} P_{2}^{+$ 6) I.C. are given at t=0 or take the S.S. values for C, I, X at \$160 BC. for flux at edges $\phi(\pm a) = 0$. No need interface BC. as we can integrate Abrongli but use appropriate D, $\overline{2}$ for that region, i.e. region d

c) To control flex, add a controler as in question 4 eather k or \overline{Z}_{a2} . Preferably, use a control rood to add and remove an abrorder \Rightarrow $\overline{Z}_{a2} = \overline{Z}_{a2} + \overline{Z}_{a2} \times \overline{Z}/\overline{Z}_{0}$ where $\overline{Z} = \overline{Z} + \lambda \overline{Z} + \lambda \overline{Z} = \overline{Z} + \lambda \overline{Z} + \overline{Z} = \overline{Z} + \overline{Z} = \overline{Z} + \overline{Z} = \overline{Z} + \overline{Z} = \overline{Z} = \overline{Z} = \overline{Z} = \overline{Z} + \overline{Z} = \overline{Z$

Pro- retpoint a, a2 - + re constants Calculate properties Zap, Zp, Dp, etc t+4t Plux use the newest of vailable from west -> east use ottot N4P = 12 = at some point. undate st t<tim

Fast transient; ignore all Ci > Ny, update 2

In general take a variable we need to track, for all var with time response < this At switch to sis various or use F-factor. For shooks below this, calculate infrequently, say 10 St or more and then update properties to recalculate fluxes and no on

Eg. Take I,X. At = 10 min

Solve flux and precursor eq. for sleady state only—

Every hour calculate Ny—

It's better to use additional submortime to calculate At

for every equations, then we can flexibly simulate various cases we mant—