1.

a) Nectron current: $\frac{J}{}$: net flow of neutren
flux thru a surface.
Neutron flux: nentron density, n, temes velacity.

Neutran denarty: the local denaty f neutions $n(r, E, \Omega, t)$ on come interpl, ie $n(r, E, t)$.
Neution fluerce: $\Phi(t)=\int_{0}^{t^{\prime}} \phi(t) t^{\prime} d t^{\prime}$

$$
\begin{aligned}
& \text { b) }\left(\frac{y}{a}\right)^{2}=B_{g}^{2}>B_{m}^{2}=\left(\frac{\partial \Sigma_{f}-\Sigma_{a}}{D}\right) \text { subcitical } \\
& B_{g}^{2}=B_{n}^{2} \text { eratel } \\
& B g^{2}<B_{m}^{2} \text { supercintical }
\end{aligned}
$$

c)
2. Vanables for flux t precursor egn's.
ϕ_{g} - neutron flux in energy group $g(g=1,2 \ldots G)$
$v_{g}=$ neutron velocity in group g

t = time
$D=$ diffusion coff. $[\mathrm{cm}]$
$\Sigma=$ crososection $\left[\mathrm{cm}^{-1}\right]$ (subscripts $a=$ absorption
$\Sigma_{s g^{\prime} g}=\Sigma_{s}$ from group $g^{\prime} \rightarrow g$
$s=$ scattering
$f=$ fission
$X_{g}=$ fission partition function,$X_{g}{ }^{c}$ refers to delayed pres.
$\beta_{i}=$ delayed fraction $\left(\beta=\sum_{i=1}^{N} \beta_{i}, \quad N=\#\right.$ oldelayed
$\nu=$ \#of neutrons produced per ' Fi'ewion
$S_{g}^{\text {ext }}=$ external source of neutrons.
$C_{i}=$ delayed precursors.
$\lambda_{i}=$ decay canst, for c_{i}
Tembyterm
flue: rate: neutron denaitity $=$ net diffuaion-absaptrar. - scattering out $\frac{\text { thu i }}{\phi}$ neutrondenaity ingroup 9 scattering in + prompt fission + delayed fission

Variatles for paroon egn's
$I=$ iodine concentuation
$x=$ Xanan concentration
$\gamma=$ production fraction
$\lambda=$ decay constants
$\sigma=$ micrascapie croctions
Termbyterm
Dodine: rate of change of $=$ fiosion sance - decay
Xeron: rate df change of $=$ fiesian saurce +1 decay - Xe decay Xe concentration

Fuel
Variatles: $N_{f}=$ concentiation of fuel isotape
Teumby term
ratedochange $=$ absomption rate
of fuel concentation

$$
\sim \Sigma_{a} \phi \sim \sigma_{a} N \phi
$$

3. Two-gramp appraximatian:
a)

$$
\begin{aligned}
\frac{F A S_{1}}{v_{1}} \frac{\partial \phi_{1}}{\partial t}= & \nabla \cdot D_{1} \nabla \phi_{1}-\Sigma_{a_{1}} \phi_{1}-\Sigma_{s_{1}} \phi_{1}+\Sigma_{s_{11}} \phi_{1}+\Sigma_{s_{2},} \phi_{2} \\
& +X_{1}(1-\beta) \nu_{1} \Sigma_{F_{1}} \phi_{1}+\nu_{2} \Sigma_{F_{2}} \phi_{2} \\
& +X_{1}^{c} \sum_{i=1}^{N} \lambda_{c} C_{i}+S_{1}^{e x t}
\end{aligned}
$$

assumis $X_{1}=1, X_{1}^{c}=1$ (fast group big sinough to apan $x_{2}=0, x_{2}^{c}=0$ "bith energive")
$\Sigma_{S_{21}}=0$ (nompscattes)

$$
\begin{aligned}
& \therefore \frac{1}{v_{1}} \frac{\partial \phi_{1}}{\partial t}=S_{1,2}^{S_{1}}=0 \quad(\text { typically }) \quad \nabla \phi_{1}-\sum_{r_{1}} \phi_{1}+(1-3)\left[\widetilde{\Gamma_{1} \Sigma_{f_{1}} \phi_{1}}+\nu_{2} \Sigma_{F_{2}} \phi_{2}\right] \\
& +\sum \lambda_{i} C_{i} \text { (when } \Sigma_{r_{1}} \equiv \sum_{a_{1}}+\Sigma_{s_{1}}-\Sigma_{s_{11}} \text {) }
\end{aligned}
$$

Fon the Thermal group,

$$
\begin{aligned}
& \frac{1}{v_{2}} \frac{\partial \phi_{2}}{\partial t}= \nabla \cdot D_{2} \nabla \phi_{2}-\Sigma_{a_{2}} \phi_{2}-\sum_{s_{2}} \phi_{2}+\sum_{s_{12}} \phi_{1}+\sum_{s_{22}} \phi_{2} \\
& \equiv \nabla \cdot D_{2} 8 \phi_{2}-\sum_{r_{2}} \phi_{2}+\Sigma_{s_{12}} \phi_{1} \\
& \uparrow\left(\equiv \Sigma_{a_{2}}+\Sigma_{s_{2}}-\Sigma_{s_{22}}\right)
\end{aligned}
$$

where $\nabla \cdot D_{g} \nabla \phi_{g}=\frac{\partial}{\partial x} D_{g} \frac{\partial \phi}{\partial x}+\frac{\partial}{\partial y} D_{g} \frac{\partial \phi}{\partial y}+\frac{\partial}{\partial z} D_{g} \frac{\partial \phi}{\partial z}$
Precursons

$$
\frac{\partial c_{i}}{\partial t}-\lambda_{i} C_{i}+\beta i\left[\nu_{1} \Sigma_{F_{1}} \phi_{1}+\nu_{2} \Sigma_{F_{2}} \phi_{2}\right]
$$

b) In the steady state, $\frac{\partial \phi_{1}}{\partial t}=\frac{\partial \phi_{2}}{\partial t}=\frac{\partial r_{i}}{\partial t}=0$ thus, from the precuras equation:

$$
\begin{aligned}
\lambda_{i} C_{i} & =\beta_{i}\left[\nu, \Sigma_{F_{1}} \phi_{1}+\nu_{2} \Sigma_{f_{2}} \phi_{2}\right] \\
\therefore \sum_{i}^{1} \lambda_{i} C_{i} & =\beta[\quad]
\end{aligned}
$$

\therefore font flux egn, becomes:

$$
0=\nabla \cdot D_{1} \nabla \phi_{1}-\Sigma_{r_{1}} \phi_{1}+\left[\nu_{1} \Sigma_{f_{1}} \phi_{1}+\nu_{2} \Sigma_{f_{2}} \phi_{2}\right]
$$

Thermal egn is same as before, except $\frac{\partial \phi_{1}}{\partial t}=0$
las you might expect, the delayed precursors play no part in the steady state solution in the 2 -group approximation.
4. $\frac{1}{v} \frac{\partial \phi}{\partial t}=\left(\nu \mathcal{S}_{F}-S_{a}\right) \phi+S, \quad \Delta b(0)=0$
a) At t close to startup, ϕ is las, therefore

$$
\begin{aligned}
& \left(v \Sigma_{f}-\Sigma_{a}\right) \phi \ll s \\
& \therefore \frac{1}{v} \frac{\partial \phi}{\partial t} \simeq s \Rightarrow \phi=v s t
\end{aligned}
$$

\simeq linear in time
b, as $\phi \uparrow$, eventually, $\left(\nu \Sigma_{f}-\Sigma_{a}\right) \phi \Delta>S$,

$$
\begin{aligned}
\therefore \frac{1}{v} \frac{\partial \phi}{\partial t} & \simeq\left(v \Sigma_{f}-\Sigma_{a}\right) \phi \\
\Rightarrow \phi & =A e^{\left(\nu \Sigma_{f}-\Sigma_{a}\right) v\left(t-t_{A}\right)}
\end{aligned}
$$

detection
threshold

c) If $S=S_{0} \delta(t)$, then sol'n like (b) where $A=$ small

d) Gris same flux detection threstiold, it is umpire to have an exponential thu x granth belau the detection range. Using a weuree, you can get up to the detectable range with a sub-cintical core.
\#5 $L^{2}=D / \Sigma_{a}, D=\frac{1}{3\left(\Sigma_{t}-\mu_{0} \Sigma_{s}\right)}$
For $\mathrm{H}_{2} \mathrm{O}$:

$$
\begin{aligned}
& \mu_{0}=0.676 \\
& \Sigma_{t}=3.45+0.022=3.47 \\
& D=\frac{1}{3(3.47-0.676 \times 3.45}=0.29296 \\
& \therefore L^{2}=0.293 / 0.022=13.3165 \\
& \therefore L=3.649 \quad(4 / 20)
\end{aligned}
$$

Fon $D_{2} O:$

$$
\begin{aligned}
& \mu_{0}=0.884 \\
& \Sigma_{F}=0.449 \\
& \therefore D=\frac{1}{3(0.449-.884 \times 0.449)}=6.40 \\
& \therefore L^{2}=6.4 / 3.3 \times 10-5=182,855 \\
& \therefore L \sim 427.61 \quad\left(D_{2} 0\right)
\end{aligned}
$$

Fon 2 reactors, same singe but $(1)=H_{2} O+(2)=D_{2} O$
then $B=B g^{2}=$ sams and buth ravitars are cenctical.

$$
\therefore \quad K=1=\left.\frac{\nu \Sigma_{F} / \Sigma_{a}}{1+L^{2} B^{2}}\right|_{D}=\left.\frac{\nu \Sigma_{f} / \Sigma_{x}}{1+L^{2} \Sigma^{2}}\right|_{(2)}
$$

ot is veonstructrie to ceonvider twio ceaes -
(A) Small reactor
(B) Large reactor

Case A small reactor
For small reactors, B^{2} is large (greater veurature - ie $\left.B^{2} \sim\left(\frac{\pi}{\Delta v a j e}\right)^{2}\right)$. Thus, the smaller the citral reactors, the mare the denominator $\left(1+\overline{\left.L^{2} B^{2}\right)}\right.$ is damunated by $L^{2} B^{2}$, to guide:

$$
\begin{aligned}
K & \left.\sim \frac{\nu \Sigma_{F} / \Sigma_{a}}{L^{2} B^{2}}\right|_{(1)}=\left.\frac{\nu \Sigma_{f} / \Sigma_{a}}{L^{2} \lambda^{2}}\right|_{D} \\
& \left.\Rightarrow \frac{\nu \Sigma_{F}}{D}\right|_{D}=\frac{\nu \Sigma_{f}}{D}
\end{aligned}
$$

$$
D_{D}=6.293, \quad D_{(2)}=6.40 .
$$

a citicial small $D_{2} O$ based reactor has to have about $20 \gamma_{0}$ terces more $v \Sigma_{F}$ (ie fuel) to be ciriticil. Leakage $\left(1+L^{2} B^{2}\right)$ is much langer in a $D_{2} 0$ reactor for the same paige $\left(B^{2}\right)$ because L^{2} is so much bugger. Isis is why you don't the small $D_{2} O$ reactors.

For $\mathrm{H}_{2} \mathrm{O}$, the leakage is better + mare than. canpenorates for the poorer abauptovi charactenatics. There is mare to say about this when multigroup effects are canaidered (ri mode nation effects)'
Car B langer reactor
Sumphythe reverse of Case A

Here B^{2} is small + in the extrene, $L^{2} B^{2} L L 1$ for bote reactors - ie leokage is not a domunant foctor. Now s^{s} a ffecto danuriate. $\left.\sum_{a \mid}\right|_{1}>\sum_{a(2)}$.....you reed less fuel to make a large $D_{2} 0$ reactor go cincical than a lage $\mathrm{H}_{2} \mathrm{O}$ ore.
lgain, ttis gnoies moderathoin arguemento,
whit will be adduesodir multugromp Whit uril be adduesodir multuqroup
6. Inhaul egn: $\rho=\frac{w l}{1+w l}+\frac{1}{1+w l} \sum_{i} \frac{w \beta i}{w+\lambda i}$
a) If p small, then the transient riduced will be very slow, ie the time constant, T will be very large $+\omega(\equiv 1 / T)$ wile be very small.

$$
\therefore \rho \simeq \omega l+\sum_{i} w \beta_{i} / \lambda_{i}=\omega \underbrace{\left[\ell+\sum_{i}^{l} \beta_{1}^{\prime} / \lambda_{i}\right]}_{\equiv\langle\ell\rangle}
$$

$=$ average lifetime
Nous, $\ell \sim 10^{-4}$ to 10^{-5} seconds, so $\ell \ll \sum_{i}^{1} \beta_{i} / \lambda_{i}$
\therefore fornomall $Q,\langle l\rangle$ donurated by precursors, thus $T=\frac{1}{\omega} \simeq \frac{\langle\ell\rangle}{P}$ is also dominated by the frecursans, not l.
b) If ρ large, Tiswmall (font tramaient) and ω is large.

$$
\begin{aligned}
\therefore q & \simeq \frac{\omega l}{1+w l}+\frac{1}{1+w l} \sum_{i} \frac{1 \beta i}{i \alpha} \simeq \frac{\omega l+\beta}{1+\omega l} \\
& \simeq \frac{w l}{1+w l} \text { sure wl }>\beta \\
\therefore w l & \simeq \frac{\rho}{1-\rho} \Rightarrow T \sim \frac{\beta(1-p)}{\rho}
\end{aligned}
$$

Thus the transient response in the large ρ case is dammiated ty l, nat the preeumsons.
c. First a word about the two reactor designs.

- CANDU is a natural U fuel, D2O moderated type reactor. The PWR is an enriched U fuel, H 2 O moderated type reactor.
- The D2O moderator of CANDU means that the core is larger in physical size than a PWR (see the solution to question 5). Since the coolant (heavy and light water in these cases) must be pressurized (to about 100 atmospheres) to prevent too much boiling and to raise thermodynamic efficiency, pressure boundaries must be provided for the coolant. Pressure boundary wall thickness goes up in proportion to vessel diameter (a simple hoop stress calculation shows this), and for CANDU, the wall thickness would be prohibitive if a pressure vessel were used to surround the entire core. Hence pressure tubes are used in CANDU. Even if there was no hoop stress problem, the use of natural fuel dictates that the core be refuelled frequently. So on-line refuelling is required.
- The PWR has a smaller core and enriched fuel, so it can get away with a pressure vessel and batch refuelling, say once a year. The tight H 2 O core of the PWR means that the reactivity coefficient for void is negative, meaning that the core tends to shut itself down when the power goes up. Just as well, too, because the control rods must penetrate the pressure vessel, making them subject to sudden ejection should the rod housing fail. The rods must have a high worth because they have to compensate for all the extra fuel that must be added to permit a reasonable time between shutdowns that are required to refuel.
- CANDU, on the other hand, does not have, or need to have, a large reactivity inventory since it uses natural U fuel and can refuel continuously. So the control rods have far less worth than a PWR and the maximum reactivity insertion due to inadvertent rod withdrawal will be lower in magnitude, slower in occurring and less likely to occur than in the PWR. However, the void coefficient is positive in the D2O design. The CANDU also has an neutron lifetime 10 times longer than the PWR.
- So, to answer the question,
- for normal transients, in which the inserted reactivities are small, the time constants are dominated by the delayed precurors. So one design is as good as the other - control is not a problem.
- But for accident transients, the reactivity insertions can be large. The PWR is prone to much larger insertions in a shorter time. But the reactor tends to shut itself down. Of course, the flip side to that is that the PWR resists being shutdown! And, here's the point of this question, the shorter neutron lifetimes make the resulting transients more rapid since it is the neutron lifetime that dictates the transient response times when insertions are greater than prompt critical.
- The CANDU, on the other hand, has accident scenarios characterized by smaller reactivity insertions that occur less quickly, making them easier to manage and the runaway is slower since the neutron lifetime is 10 time longer in CANDU than in PWR. The positive reactivity coefficient increases the instability but makes it easier to detect a problem (the flux rate change is an easy signal to detect). In the PWR case, the negative feedback tends to mask the event that we need to detect. To compensate for the positive void coefficient, CANDU uses a second shutdown system as a backup. The PWR has only one system.
- Both systems have unique characteristics that result from their design. Both have been engineered to be safe enough. In, short, safety coverage is more a function of system behaviour that it is of any single design characteristic.

7. Q)

The finite difference equations are easily denied directly from the governing equations. Replace $\nabla \cdot D_{g} \nabla \phi_{g}$ with:

Illustration of reactorgrid. there will be a finer dumioion than indicated, perhaps

$$
\frac{\partial}{\partial x} D_{g} \frac{\partial \phi_{g}}{\partial x}+\frac{\partial}{\partial y} D_{g} \frac{\partial \phi_{g}}{\partial y}+\frac{\partial}{\partial z} D_{g} \partial \frac{\phi_{g}}{\partial z} \Rightarrow \frac{20 \times 20 \times 20}{D_{E_{F}}\left(\phi_{E}-\phi_{p}\right)-D_{w_{F}}\left(\phi_{p}-\phi_{m}\right)} \Delta_{w}
$$

Replace $\frac{\partial Y}{\partial t}$ with $\frac{Y^{t+\Delta t}-y^{t}}{\Delta t}$ where $Y=\phi_{g}, \widetilde{C}_{i}, X_{,} I_{\Delta} N_{f}$
the rest of the terns are evaluated as is.
So we have:

$$
\frac{\phi_{g}^{t+\Delta t}-\phi_{g}^{t}}{\Delta t}=v_{g}\left\{\begin{array}{l}
\text { Leakage terms as above }-\Sigma_{a_{g}} \phi_{g}-\Sigma_{s_{g}} \phi_{g} \\
+\sum_{g^{\prime}=1}^{G} \sum_{s_{g^{\prime} g}} \phi_{g}+x_{g}(1-\beta) \ldots \ldots \text { etc. }
\end{array}\right\}
$$

If we use a simple explicit sachems, we just evaluate

$$
\phi_{g}^{t+\Delta t}=\phi_{g}^{t}+\Delta t v_{g}\{\cdots\}
$$

Some for $C_{i}, X, I+N_{f}$.
If re use a semi-implicit scheme, we evaluate the R.H.S. terms at $t+\Delta t$ if poitle, gather.up $\phi_{g}^{t+\Delta t}$ terms d solve.

In this ullanner, we march formed in time. Well nad some achene to central the flux, typically. We can artifically introduce the fudge factor k in the fission some e term $\Rightarrow \frac{x_{g}(1-\beta)}{k} \sum_{g^{\prime}=1}^{G} \nu_{g^{\prime}} \varepsilon_{f_{g}} \phi_{g^{\prime}}$ and adjust k as fallows:

$$
k^{t+\Delta t}=\frac{k^{t} \int_{\forall} \phi^{t+\Delta t} \forall}{\int_{\forall} \phi^{t} d \forall}
$$

or introduce a controller:

$$
\begin{aligned}
& k^{t+\Delta t}=k^{t}+a\left(\phi_{n}^{t+\Delta t}-\phi_{s_{p}}\right)+b \frac{\phi_{m}^{t+\Delta t}-\phi_{m}^{t}}{\Delta t} \\
& \text { asur did in measured' } \\
& \text { ip calculated }
\end{aligned}
$$

as me did in asagiment \# 4 .
"K" can be apphed to the absorption terms to simulate real ventivelsod movement if you prefer. It depends on the intent of the simulation.

Boundary Conditions are flux $=0$ at extrapolated lengths. Initial conditions are simply the starting values for ϕ_{9}, c_{i}, etc.
b) The speed of response of the equation set is as follows:
$\phi_{g} \sim$ user \rightarrow misses.
$C_{i} \sim$ seconds \rightarrow minutes
$X, I \sim$ minutes \rightarrow hours
$N_{f} \quad \sim$ hours \rightarrow days
Typical Δt^{\prime} s would te .
If you need to calculate poison transients, for instance, why bother to thy and track $\phi_{g}+\mathrm{C}_{\mathrm{i}}$ since we can just assume a guin flux or power. alas fuel unvientarymon't change much in a four hours. So set the mentionvelacitres to same slow speed, say $v_{g}=1 \mathrm{em} / \mathrm{sec}$, and set $\lambda_{i}=1 \sec ^{-1}$ so that you can use a $\Delta t \sim 1$ second and it won 1 t be vecotly to sweep through all your equations in a time frame relevant to changes in prions.
You ran apply a fudge factor, F, to each equation, is $F_{g} \frac{1}{v_{g}} \partial \phi_{g}=\cdots \cdot$
and simply adjust F_{g} as needed to "speed up" ar "slaw dawn" pheramera you are not interacted in.
8.

He enthalpy balance equation is \downarrow

$$
\rho c \frac{\partial T}{\partial t}=w \frac{\partial h}{\partial z}+g^{\prime}(z) \Rightarrow \rho c \frac{\partial T}{\partial t}=w p c \frac{\partial T}{\partial z}+g^{\prime}(z)
$$

thus,

$$
\begin{aligned}
& \text { Thus, } \\
& \frac{T_{k}^{t+\Delta t}-T_{k}^{t}}{\Delta t}=W \frac{\left(T_{k-1}^{t}-T_{k}^{t}\right)+T_{0 u} T_{1}=T_{k}}{\Delta z}+\gamma T_{k}(t) \\
& \text { Solve comp le mixing make the } T_{k}^{t+\Delta t}
\end{aligned}
$$

Solve for $T_{k}{ }^{t+\Delta t}$ at each time step. Sweep an k.

