from http://www.columbia.edu/~is375/Mathematical%20Notation.pdf downloaded on 2021-03-06

Commonly Used Mathematical Notation

1 Logical Statements

Common symbols for logical statement:

∨ logical disjunction: "or"

Note:

in mathematics this is always an "inclusive or" i.e. "on **or** the other **or both**"

- \land logical conjunction: "and"
- \neg logical negation: "not"

 \rightarrow material implication: implies; if .. then

Note:

 $P \rightarrow Q$ means: if P is true then Q is also true; if P is false then nothing is said about Qcan also be expressed as: if P then Q P implies Q Q, if P P only if Q P is a sufficient condition for Q Q is a necessary condition for Psometimes writen as \Rightarrow

 $f: X \to Y$ function arrow: function f maps the set X into the set Y

• **function composition:** $f \circ g$ function such that $(f \circ g)(x) = f(g(x))$

 \leftrightarrow material equivalence: if and only if (iff)

Note:

 $\begin{array}{ll} P \leftrightarrow Q & \text{means:} \\ & \text{means } P \text{ is true if } Q \text{ is true and } P \text{ is false if } Q \text{ is false} \\ \text{can also be expressed as:} \\ & P, \text{ if and only if } Q \\ & Q, \text{ if and only if } P \\ & P \text{ is a necessary and sufficient condition for } Q \\ & Q \text{ is a necessary and sufficient condition for } P \\ \text{sometimes writen as } \Leftrightarrow \end{array}$

 \ll is much less than

 \gg is much greater than

- \therefore therefore
- \forall universal quantification: for all/any/each
- \exists existential quantification: there exists
- \exists ! **uniqueness quantification:** there exists exactly one
- \equiv definition: is defined as

Note:

sometimes writen as :=

2 Set Notation

A set is some collection of objects. The objects contained in a set are known as elements or members. This can be anything from numbers, people, other sets, etc. Some examples of common set notation:

 $\{,\}$ set brackets: the set of ...

e.g. $\{a, b, c\}$ means the set consisting of a, b, and c

{|} set builder notation: the set of ... such that ... i.e. $\{x|P(x)\}$ means the set of all x for which P(x) is true. e.g. $\{n \in N : n^2 < 20\} = \{0, 1, 2, 3, 4\}$ Note: {|} and {:} are equivalent notation

\emptyset empty set

i.e. a set with no elements. {} is equivalent notation

- \in set membership: is an element of
- \notin is not an element of

2.1 Set Operations

Commonly used operations on sets:

\cup Union

 $A \cup B \qquad \text{set containing all elements of } A \text{ and } B.$ $A \cup B = \{x \mid x \in A \lor x \in B\}$

\cap Intersect

 $A \cap B$ set containing all those elements that A and B have in common

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

\ Difference or Compliment

 $\begin{array}{ll} A \backslash B & \text{set containing all those elements of } A \text{ that are not in } B \\ A \backslash B = \{ x \mid x \in A \land x \notin B \} \end{array}$

\subseteq Subset

$A \subseteq B$	subset: every element of A is also element of B
$A \subset B$	proper subset: $A \subseteq B$ but $A \neq B$.

\supseteq Superset

$A \supseteq B$	every element of B is also element of A .
$A \supset B$	$A \supseteq B$ but $A \neq B$.

2.2 Number Sets

Most commonly used sets of numbers:

\mathbb{P} Prime Numbers

Set of all numbers only divisible by 1 and itself. $\mathbb{P} = \{1, 2, 3, 5, 7, 11, 13, 17...\}$

\mathbb{N} Natural Numbers

Set of all positive or sometimes all non-negative intigers $\mathbb{N} = \{1, 2, 3, ...\}$, or sometimes $\mathbb{N} = \{0, 1, 2, 3, ...\}$

\mathbb{Z} Intigers

Set of all integers whether positive, negative or zero. $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}.$

\mathbb{Q} Rational Numbers

Set of all fractions

\mathbb{R} Real Numbers

Set of all rational numbers and all irrational numbers (i.e. numbers which cannot be rewritten as fractions, such as π , e, and $\sqrt{2}$).

Some variations:

- \mathbb{R}^+ All positive real numbers
- \mathbb{R}^- All positive real numbers
- \mathbb{R}^2 Two dimensional \mathbb{R} space
- \mathbb{R}^n N dimensional \mathbb{R} space

\mathbb{C} Complex Numbers

Set of all number of the form: a + biwhere: a and b are real numbers, and

i is the imaginary unit, with the property $i^2 = -1$

Note: $\mathbb{P} \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$