

*INSTANTAN

Benoit Arsenault, AECL March, 2000

29/03/2005

100004/U:dpmsword\arsenault

*INSTANTAN Module

Calculate instantaneous flux and power distributions based on instantaneous fuel burnup distribution.

Let channel (i,j) has Age (i,j) Burnup of bundle (i,j,k) = ω (i,j,k,o) + Age(i,j) x [ω (i,j,k,l) - ω (i,j,k,o)]

where

Age = 0 at the beginning of cycle and 1.0 at the end of cycle Bundle irradiation at the beginning and at the end of cycle are calculated in the Time-Average Core Calculation

29/03/2005

INSTANTAN Module (con't)

- Two options to generate channel age distribution:
- 1) Pure random age distribution generated by a random number generator

input required: random seed minimum age difference between adjacent channels

2) PATTERN RANDIS (patterned random distribution) created by an external program RANDIS

input required: first channel to be refuelled (out of 7 by 7 channels) average age (default = 0.50)

output: G Cards (channel age for each channel)

29/03/2005

100004/U:dpmsword\arsenault

Selection Criterion of Channel to be Refuelled Figure of Merit of Potential Candidate Channel (i)

 \square W(i) Σ Age(j) x D(i,j),

where j is evaluated over all channels which have been refuelled

W(i) is a weighting factor normally 0.0 and 1.0

W(i) is zero if channel (i) has the same fuelling direction as the last channel refuelled,

W(i)=0.1 if an adjacent channel has been refuelled recently

Age(j) is the age of channel j (age=0 for channels not yet refuelled), and

D(i,j) is the distance between channel i and channel j.

The channel with the highest merit, i.e., Maximum Age Distance (MAD), is chosen for refuelling.

29/03/2005

Example of Refuelling Sequence in a 7 by 7 Lattice

-3	12	-23	6	-27	10	-19
18	-39	32	-19	34	-37	4
-29	14	-47	38	-17	42	-15
9	-43	26	-1	48	-25	30
-33	22	-49	28	-31	20	-7
16	-41	36	-13	40	-35	44
-5	24	-9	46	-21	2	-11

0000000

n

000

a

Q C

a G

0000000000

Example of G cards generated by RANDIS

	6660	0000	2000	. 0000	. 0000	.0000
, 0000		3400	4400		1400	4800
. 3800	.9800		2008	0000	0000	0000
.9800	.0000	. 0000	.0000			
.0300	b			0000	1200	6400
.0000	.0000	.0000		3444	6400	4106
.0400	.7800	.2000	,5000	,30U9	.9994	0.000
.0100	13500	.1200	.0000	.0000		,0000
,0000					****	1 200
, 0000	.0000	.0000	.0000	, 300U	.2000	, 1900
.5000	.1205	. 1083	. 5400	, 6000	.100	. 2000
.7400	.2000	.3000	. 6000	, 0000	.0000	.0000
.0000						
. 0000	.0000	.0000	.7800	* 6300	. 1100	~7000
.4000	. 8600	. 1000	,7800	. 3000	. 5200	
.4400	.5000	.9600	.7800	.6200	.0000	.0000
0000						
.0000	.0000	. 5500	, 9000		.7200	. 5400
DOBL	4600	.0000	,€200	,\$400	. 5490	.4200
	3400	. 4800	,9000	.9400	.7200	, 0000
0000						
	0000	.1500	. 5200	. 6400	.2200	.3600
1000	0000	2600	9200	.7200	. 3300	.7600
.1000	* ECO	1800	9200	6400	. 2200	, 0000
.1400	,3000			•••••		
. 9990	4340	2480	ap00	.4200	.7600	. 0600
.0000	.0200	1000	1000	4400	3600	0600
.2400	- 5410 D	. 1000		4300	7600	0600
.4800	.0 1 00	* 1900		* 4444	11444	
. 0000				****	1400	4800
.3800	.0800	.7400	,44.00	, 8400	, 1440	4400
. 3800	.0400	*2000	.4000			4800
. 9800	0000	.7400	.4400	. 3400	.1460	.4800
.0400	.3800	.2000	, 5,800	.3400	, 5600	.0100
0000	.3000	. 1300	.8600	,4600	. 3200	
.0400	. 3600	, 2000	. 5800	.3400	, 19 00	.0200
0800						
. 6000	.1200	.3000	*860D	. 5000	.1.00	,2800
1400	2000	.3000	. 4000	,8000	.2400	.1600
1000	1200	. 3000	, 9600	,5800	.1800	,2600
2400						
100	8600	. 6000	.7800	.9000	. 5200	, 6200
		1600	7800	6100	. 9 200	,7000
· 788.	aX00	6000	7800	900b	. 5200	. 8200
	.2014	* *****				
		96.50	6200	9400	. 6400	.4300
. 55 90		10000 10000	0000	6200	7200	5300
	, 3400	.0000	6301	dino	6400	1200
. 8800	. 4600	, 90MA	* # # # #	')enn	.9694	
, #400		- 445	****		7866	7400
.1000	, 3200	12600	. 5200	. /400	.4400	1040
4.400	ደ	. 1.800	. 5200	. 6400	,4200	,20UV

29/03/2005

100004/U:dpmsword\arsenault

	Olympic Devent				Bundle Power			
	Channel Power	Mean Value	***	Sloma		Meen Val	+/-	Sigme
		7240 0		65.8	868.8 KW	855.5		7.6
Rendis 388	7305.1 KW	1 6-8.0		40,0	858 KW			
S.C. 01	7179.8 KW				860.3 KW			
1.0 FPD step	7229.5 KW				854.0 KW			
	7374.3 KW				843.0 KW			
	7223.7 WW				858.3 KW			
	7233.1 KW				844.5 KW			
	7208.1 KW				861 KW			
	7275.8 KW				851.7 KW			
	7221.2 KW				857.1 KW			
	7248.5 KW			0		Mean Val	44	Sigma
		Meen Value	. **	- Sigma	878 100	876.3		11.1
Randis 388	7398 KW	7357.	3	9 <u>7.7</u>	870.9 INV			
No S.C.	7338.3 KW				578 7 KW			
	7314.4 KW				ORE & MA			
	7297.8 KW							
	7327.5 KW				001.1 KW			
	7448.8 KW							
	7279.2 KW				50/JD KTV			
	7567.1 KW				SBC KAA			
	7260 KW				858.7 KYY			
	7343 9 KW				23012 KM			
		Meen Vah	n +	/- Siome		Mean Val	÷	- Sigma
	7022 141	7040		35.3	610 KW	810.0)	5.7
Randis Origination	F 7003 KW	1010	* •		803.8 KW			
10 days from a	7039 KVI	Llow Volum		Min Value	018.8 KW			
350FPD mudy		70	83	6968	610.7 KW			
	COMO KVI			0000	618.1 KW			
					812.9 KW			
					799.7 WW			
	108/4 KVY				810.4 W			
	7044 KW				817.5 MN			
	7046 KW				807 AN			
	8968 KW				007 877			

100004/U:dpmsword\arsenault

page 7

1

÷

		Meen Value +/	- Sigma		Mean Val	+/- Sigma
*Instantan	9254.8 KW	8498.3	804.8	1150.3 KW	1049,5	76.7
(AGEMIN=0.0)	8147.4 KW			1015.1 KW		
ę,	8927.1 KW	Max Value	Min Value	1104.5 KW		
	9503.8 KW	9503.8	7611.5	1185.5 kW		
	8530.5 KW			1058.4 KW		
	7611.5 KW			942.9 KW		
	8127.4 KW			1022.8 KW		
4	7990.2 KW			981.9 KW		
	6118.9 KW			991.8 KW		
	6771.7 KW			1042.2 KW		
		Mean Value +/	- Sigma		Mean Val	+/- Sigma
"instantan	9549.3 KW	8627.2	625.5	1172.4 KW	1039.4	87.5
(AGEMIN=0.2)	8782.6 KW			1045.8 KW		
ę,	7962.9 KW	Max Value	Min Value	932.8 KW		
	8945.1 KW	9549,3	7734.3	1107.8 KW		
	7734,3 KW			942.9 KW		
	9526.7 KW			1162.4 KW		
	7938.4 KW			937.3 KW		
	8568.7 KW			1025.8 KW		
	8732.6 KW			1029.6 KW		
	8531.7 KW			1038.9 KW		
		Mean Value +/	- Sigina		Mean Val	+/- Sigma
Randia Originated	7033 kW	7019.1	35.3	816 KW	810.0	5.7
10 days from a	7039 KW			803.8 KW		
360FPD study	7047 XW	Max Value	Min Value	518.8 KW		
	6995 KW	7063	6968	810.7 KW		
	6962 KW			813.1 KW		
	7083 KW			612:9 KW		
	6974 KW			799.7 KW		
	7044 KW			810.4 KW		
	7046 KW			807.5 KW		
	6968 XW			807 KW		

29/03/2005

100004/U:dpmsword\arsenault

page 8

RANDIS age-pattern generator has been used to generate random age patterns for many fuel cycle studies:

- SEU: 0.9% up to 3.2% U-235
- MOX: up to 4% Pu

DUPIC, RU

- Reactors: C-6, C-8, HAC (640 channels)
- Fuel design: 37-el, CANFLEX, 61-el

Maximum channel and maximum bundle powers predicted by RANDIS are generally within 5% of those derived by RFSP time-dependent fuelling simulations at a later stage.