

The RFSP Direct-Access File

Benoit Arsenault, AECL March, 2000

29/03/2005

RFSP Data Base

- Modules communicate through direct access (database) file
- Hierarchical structure
- Up to 7 levels
- Up to 40 records and/or subindices per level
- All model data stored, minimizing input requirements

Communication with Other Codes or Platforms

- *RMICASCII, *WMICASCII
 - read and write direct access file in ASCII format

• *RNSES, *WNSES

read and write direct access file to NSES ASCII format (for link to HQSIMEX)

• *NUCIRCLNK

- read coolant properties from NUCIRC and write bundle powers to NUCIRC
 *CERBERUS, *CERBRRS
- links to CATHENA, FIREBIRD, SOPHT, NUCIRC

RFSP Direct-Access File

- Hierarchical or tree-like organizational structure.
- Local direct-access file called "STORE".
- Composed of indices and records.
- Up to 7 levels of indices.
- Under any index may be combined total of 40 subindices and records.
- Move from lowest-level (Level-1) index to higher-and higher-level subindices.
- Not all records are at the same level.
- Records and index identified by 10-character alphanumeric name.
- Names need be unique only within an index.

Example of the Structure of a Direct-Access

- The system of indices is used to gain access to any record by giving the proper sequence of indices, from lowest level to highest level, leading to that record.
- [Note: Since names are not necessarily unique, the user must be careful to properly identify the record desired.
- Usually the index names correspond to the module that creates them i.e.:

*DATA GEOMETRY creates GEOMETRY index *DATA IRRADIATION creates IRRADIATION index *DATA FLUX/POWER creates FLUX/POWER index *SIMULATE creates SIMULDATA index

- Each index contains names, lengths, and addresses of its subindices and records.
- Also index can be used to store information, 6 words called the IDENT array, displayed by *PRINT MASS

Modules *DELETE and *STORE can be used to delete or copy, respectively, records or whole indices (including everything under them) e.g.,:
*STORE

FROM FLUX/POWERPOWERS TO REFORM FLUX/POWERPOWERS *DELETE FLUX/POWERPOWERS CHANNEL

• *PRINT can be used to print most records (without listing the complete path) and in some cases whole indices and everything below them:

*PRINT	GEOMETRY					
*PRINT	IRRADIATION					
*PRINT	PHYS PARMS					
*PRINT	DIMENSIONS (no need for GEOMETRY)					
Exception is *SIMULATE records:						
*PRINT	RECORD SIMULDATA REACTOR ENERGY					

29/03/2005

*USE DAF/*MAKE DAF vs. *READ TAPE/RITE Tape

Advantages of *USE DAF/MAKE DAF

- RFSP data base is saved as a direct-access file
- Better than copying "STORE" file since name is shown in output file
- Faster
- Full path names can be given (70 characters available) Disadvantages of *USE DAF/*MAKE DAF
- File size large
- *DELETE's create holes that are not filled if possible but size of file can, at best, stay the same
- For calculations where file keeps growing e.g. *SIMULATE, *CERBERUS or *CERBRRS may be unusable with limited disk space 29/03/2005

USE DAF/*MAKE DAF vs. *READ TAPE/RITE Tape (con'**t**)

Advantages of *READ TAPE/*RITE Tape

- File size is kept to minimum; *DELETE can be used to control size
- Can be used to merge models: *READ TAPE file 1 *READ TAPE file 2 TEMP *STORE FROM TEMP GEOMETRY TO GEOMETRY *DELETE TEMP

USE DAF/*MAKE DAF vs. *READ TAPE/RITE Tape (con't) Disadvantages of *READ TAPE/*RITE Tape

- Slower because direct-access file must be created each time from sequential file
- File name limited to 10 characters

*PRNT MASS (or PRINT MASS)

		•		
0	INDEX	MASTERINDX	256	9611081430
1	INDEX	HOLES	256	9405270925
2	RECORD	HOLES	400	\leftarrow Location of available space in the direct access file
1	INDEX	MODEL	256	9304070747
		PL	MAR9	\leftarrow Model name assigned by user, stored in index
1 Ge	INDEX EOMETRY)	GEOMETRY	256	9611081427 ← Main Level Index (*DATA
2	RECORD	DIMENSIONS	30	← Data from A, B, C and P GEOMETRY trailer cards
2	RECORDS	MESH SPACE	232	\leftarrow Mesh spacing and mesh centre values as input on X, Y and
Ζ¢	cards			
2	RECORDS	NA ARRAY	73980	←Indicator of material type in each mesh 0-outside, 1-inside
mc	odel			
2	RECORDS	FUEL TYPES	9120	←Bundle type - fuel tables from PPV or WIMS input on K
car	rd			
2	RECORD	CHAN NUMS	484	← cross reference of row, column to channel number-used
	ernally			
2		REGIONS	760	Channel groupings usually burnup regions input on J card
2		ROWCOLUMNS		←row, column, plane id, input on F, G, H cards
	RECORD	SERIAL NUM	91210	+bundle serial numbers (date and position) from L and S card
2		MESH NUMS	1728	mesh numbering per plane (1 to NPTS) - used internally
2		ILIMITS	1152	temesh starting and ending point for each row - used internally
2	RECORD	NOTCHRADII	10	radius and Z positions of calandria notch - input on M, N
car				
		ROPEDATA	34	\leftarrow *INTREP input on F, G, and H cards to model ROP
det	tectors			
2		DIFF COM 1	26	INTREP input on J card for difference compensation
		NUMDETGRPS	1	←*INTREP input on A card - no. of detector groups
2		GROUPSPECS	56	←*INTREP input on B card - detector group specifications
2		DTCTRSPECS	6336	←*INTREP input on D cards - detector positions
2	RECC	ORD ION CHAM	8	\leftarrow *INTREP input on M and N cards - ion chamber electronics
29/	/03/2005		10000	4/U:dpmsword/arsenault
			10000	n o aprilo v ora arbonaatt

1

Irradiation

1 INDEX IRRA	DIATION 256	9405271004 ←Main Level Index (*DATA			
IRRADIATION)					
2 RECORD FUEL	SCHEM 380	←Fuelling scheme input on B and C cards			
2 RECORD EXIT	IRRAD 380	Time average exit irradiations specified on A cards			
2 RECORD FUEL	IRRAD 4560	←Snapshot of fuel bundle irradiation (n/kb)			
2 RECORD FUEL	FLUX 4560	← Snapshot of fuel flux			
2 RECORD FUEL	BURNUP 4560	←Snapshot of fuel burnup			
2 RECORD DELT	A RHO 4560	←Bundle reactivity change on refuelling each channel			
2 RECORD CHN	BURNUP 380	←Time average channel exit burnup (*SUMMARY)			
2 RECORD K IN	CREASE 380	←Reactivity change upon refuelling each channel (from *K-			
CHANGE)					
2 RECORD LAST	FUEL 380	\leftarrow Energy index for last fuelling of each channel (from			
*SIMULATE)					
2 RECORD LAST	FULCYC 380	←Cycle indicator for multicycle scheme			
2 RECORD MUL	FICYCLE 222	←Definition of multicycle scheme input on E card			
2 RECORD GENI	TULSCH 13	←Generalized fuelling schemes as defined on D cards			
2 RECORD KLIN	CREASE 380	← Reactivity due to fuelling for low-Z half of core			
2 RECORD KHIN	CREASE 380	←Reactivity due to fuelling for high-Z half of core			
2 RECORD T.A.F	F*PHI 4560	←Time average fuel flux			
2 RECORD TIMA	VEXITW 4560	←Time average bundle exit irradiations at end-of-cycle			
2 RECORD BOC	IRRADS 9120	←Time average beginning and end of cycle bundle irradiations			
2 RECORD DWE	LL TIME 380	←Time average channel dwell times (time between			
refuellings)					
2 RECORD BUN	BURNUP 4560	←Time average bundle exit burnups at end-of-cycle			
(*SUMMARY)					
2 RECORD	BOC BURNUP	P 9120 ←Time average beginning and end of cycle bundle			
burnups (*SUMMARY)					

29/03/2005

i

Fuel Props

l PF	INDEX ROPS)	FUEL PROPS	256	9405271004 ← Main Level Index (*DATA FUEL
	,	ZTFU01 NAT	14	Exercise the type name and number of zone controllers in
ine	dex			
2	RECORD	FIXED PROP	20	←Reflector cross sections and any additional fixed property
2	RECORD	MOVE DEVS	4792	← Moveable device positions
2	INDEX	R000	256	←Second level index under which PPV iputs are stored
2	INDEX	1000	250	Cocond level malex under which it i v ipus are stored
3	RECORD	R000	90	← Default PPV input - corresponding to first PPV input
3	RECORD	WSFU01 NAT	90	←PPV input for fuel type WSFU01 NAT
3	RECORD	WSFU03 NAT	90	
3	RECORD	WSFU05 NAT	90	
3	RECORD	WSFU02 DEP	90	
3	RECORD	WSFU04 DEP	90	
3	RECORD	CEFU01 NAT	90	
3	RECORD	CEFU02 NAT	90	
3	RECORD	GEFU01 NAT	90	
3	RECORD	WSCC06 NAT	90	
3		WSFU05ANAT	90	
3	RECORD	WSFU04ADEP	90	
3	RECORD	ZTFU01 NAT	90	
2	RECORD	MOVE PROPS	642	←Moveable device types, i.e. incremental cross sections
2	RECORD	ZC NAME	28	←Moveable device names for zone controller compartments
2	RECORD	ZC LEVEL	14	\leftarrow Zone controller fills from latest calculation
2	RECORD	WSFU04 DEP	493	\leftarrow PPV output for fuel type WSFU04 DEP - i.e. fuel table
2	RECORD	GEFU01 NAT	493	
2	RECORD	ZTFU01 NAT	493	

Flux/Power 1 INDEX FLUX/POWER 256 9405271017 ←Main Level Index (*DATA FLUX/POWER) ←Second level index under which powers are stored 2 INDEX POWERS 256 2061400.00 879.79 6995.86.956120 \leftarrow Index contains info from latest calculation: total thermal power, max bundle power, max channel power and thermal-to-fission ratio 3 RECORD BUNDLE 4560 ←Bundle powers 380 3 RECORD CHANNEL ←Channel powers 2 INDEX XENON DIST ← Second level index under which satrating fission product 256 concentrations are stored for end of time step RECORD FUEL FLUX 4560 \leftarrow fuel flux at end of time stap 3 3 RECORD IODINE 4560 \leftarrow iodine concentration at end of time stap RECORD XENON 4560 \leftarrow xenon concentration at end of time stap 3 RECORD PM 149 4560 3 RECORD SM 149 3 4560 RECORD RU 105 4560 3 RECORD RH 105 4560 3 RECORD PM 151 4560 3 RECORD SM 151 4560 3 3 RECORD SM 155 4560 RECORD EU155 4560 3 RECORD EU 157 4560 3 RECORD GD 157 4560 3 RECORD AG 113 4560 3 RECORD CD 113 3 4560 RECORD XENON META 3 4560

29/03/2005

Flux/Power (con't)

2	INDEX	XENON INIT	256	\leftarrow Second level index under which saturating fission produc	t
		are stored for begi	-	me step	
3		FUEL FLUX	4560		
3		IODINE	4560		
3		XENON	4560		
3		XENON META	4560		
3	RECORD		4560		
3	RECORD		4560		
3	RECORD	RU 150	4560		
3	RECORD	RH 105	4560		
3	RECORD	PM 151	4560		
3	RECORD	SM 151	4560		
3	RECORD	SM 155	4560		
3	RECORD	EU 155	4560		
3	RECORD	EU 157	4560		
3	RECORD	GD 157	4560		
3	RECORD	AG 113	4560		
3	RECORD	CD 113	4560		
2	INDEX	OVERPOWERS	256	←Second level index under which overpowers are stored	
3	RECORD	CHNLOVPWR	380	←Channel overpowers (*SIMULATE vs REFORM)	
3	RECORD	BNDLOVPWR	4560	←Bundle overpowers (*SIMULATE vs REFORM)	
2	INDEX	FAST FLUX	256	←Second level index containing fast flux 44 36 24 2 2	
3	RECORD	2	1133	←Fast flux for z-plane 2 (NPTS)	
3	RECORD	3	1133		
3	RECORD	4	1133		
3	RECORD	5	1133		
ete	c, etc				
3	RECORD	23	1133		
3		CELL FLXF	4560	←lattice cell fast flux	
29/0	3/2005		100004	/U:dpmsword/arsenault	nane

Flux/Power (con't)

2 INDEX	SLOW FLUX	256	←Second level index containing thermal flux 44 36 24 .200E-04 1.500000 1.000359 .500E+00 1 10
300			
3 RECOR	D 2	1133	←Thermal flux for z-plane 2 (NPTS)
3 RECOR	D 3	1133	• • •
3 RECOR	D 4	1133	
3 RECOR	D 5	1133	
etc, etc			
3 RECOR	D 23	1133	
3 RECOR	D CELL PHI	4560	←lattice cell thermal flux
1 INDEX	REFORM	256	9405251451 ←Main level index containing reference
power distr		250	9405251451
2 INDEX		256	
3 INDEX		256	
J INDEA	TOWERS	250	2061400.00 873.84 6955.31 0.956120
4 RECOR	D CHANNEL	380	2001400.00 873.84 0733.31 0.730120
4 RECOR		4560	
4 ALCON	D BONDLE	4,500	
1 INDEX	AUXILDATA	256	9405251510
19.236000	182.3999 .900000	2061.40	14 10 30 25 20200
stored in in	dex, i.e. UBUN, TAI	BURN, RA	T, FULPOW, INTLF, INTPOL, IOLDB, INTBP, INTBU,
INTCP			
2 RECOR	D REGIONS	760	←channel regions from D card
2 RECOR	D AXL REGION	28	←axial region names from E card
2 RECOR	D REF FLUX	14	←reference flux per axial zone from E card
2 RECPR	D CPPFREGION	380	← CPPF region (0 or 1) read in by *READ CARD
2 RECOR	D LIFE NPOOL	1	←number of bundles in pool statistics, LTPOOL on A card
2 RECOR	D LIFE BURN	1	←average exit burnup for NPOOL bundles, BURNLT on B
card			
2 RECOR	D TA BURN	14	←time average end-of-cycle burnup input on E card
29/03/2005		100004	/U:dpmsword/arsenault
2710312003		100004	(O.upinsworu/arschautt

page 16

PHYS PARMS

1	INDEX	PHYS PARMS	256	9702271432	←Main level index for material properties
2	RECORD	BNDRPLANES	6	←plane boundari	ies for modelling moderator level
2	RECORD	F FACTOR	4560	←F factor - ratio	o of thermal fuel flux to cell flux
2	RECORD	H FACTOR	4560	←H factor - ratio	o fo bundle power to cell thermal flux
2	INDEX	SIGMATRF1	256	44 36 24 (inde:	←Fast transport cross section x includes mesh dimensions)
3	RECORD	2	1133	←values for Z pl	ane 2 (NPTS)
3	RECORD	3	1133	-	
ete	c, etc				
3	RECORD	23	1133		
2	INDEX	SIGABSLOW	256	44 36 24 ←Th	ermal transport corss sectin
3	RECORD	2	1133		
3	RECORD	3	1133		
et	c, etc				
3	RECORD	23	1133		
2	INDEX	SIGABSLOW	256	44 36 24 ←Th	ermal absorrtion cross section
3	RECORD	2	1133		
3	RECORD	3	1133		
et	c, etc				
3	RECORD	23	1133		

!

-

PHYS PARMS (con't)

2 3 3	INDEX RECORD RECORD	SIGREMVFST 2 3	256 1133 1133	44 36 24 ← Fast absorption cross section
eto 3	c, etc RECORD	23	1133	
2	INDEX RECORD	NUSIGFISS 2	256 1133	44 36 24 ← thermal production cross section
3	RECORD	3	1133	
eto	c, etc			

XENON Properties

I INDEX	PROP	256	9302021040	←Main level index for xenon properties					
from PPV or W	IMS								
			0.29E-04 0.212H	E-04 0.320E-17 ←index contains I and Xe					
decay contants a	and xenon microscop	ic cross	section						
2 RECORD	WSFU04 DEP	188	←1) ratio of I yie	eld to I+Xe, 2) reference Xe concentration, 3)					
Xe incremental	absorption cross sec	tion vs i	rradiation						
2 RECORD	GEFU01 NAT	188							
2 RECORD	ZTFU01 NAT	188							
	*SIMULATE RECORDS								
1 INDEX	SIMULDATA	256	9611081430						
2 INDEX	PLGSUNIT1	256							
3 INDEX	147424620	256							
4 INDEX	158505929	256							

2061400.00 879.79 6995.86 .956120D 4560 .999919

20	01400.00 0	17.17 0775.00	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
5	RECORD	PPVABBDATA	196080	
5	RECORD	SERIAL NUM	9120	
5	REORD	FUEL TYPES	9120	
5	RECORD	CELL PHI	4560	
5	RECORD	FUEL IRRAD	4560	
5	RECORD	F FACTOR	4560	
5	RECORD	CELL FLXF	4560	
5	RECORD	LAST FUEL	380	
5	RECORD	LASTFULCYC	380	
5	RECORD	H FACTOR	4560	
5	RECORD	BUNDLE	4560	
5	RECORD	CHANNEL	380	
5	RECORD	FUELBURNUP	4560	
5	RECORD	CHNLOVPWR	380	

1