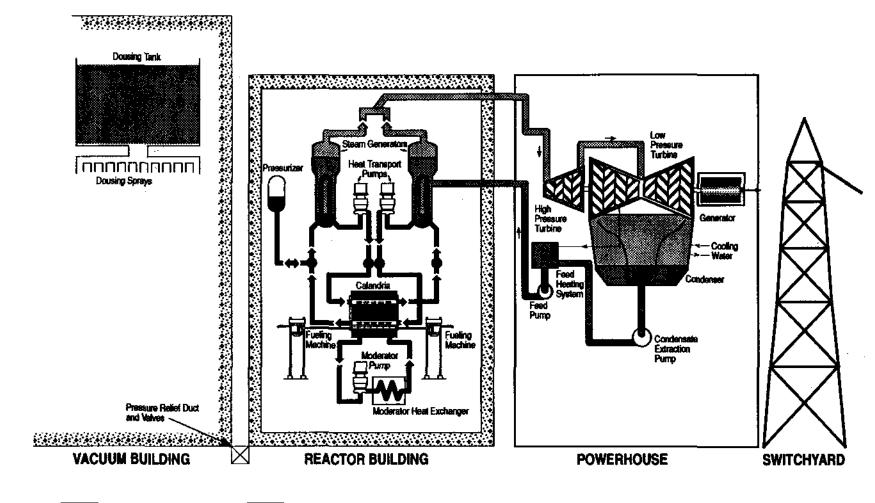
This course was originally developed for the use of Ontario Hydro employees. Reproduced on the CANTEACH web site with permission


NUCLEAR TRAINING DEPARTMENT COURSE 41001 INTRODUCTION TO CANDU PROCESSES

FOR ONTARIO HYDRO USE ONLY

R1 - 93.09.15

INTERIM APPROVAL FOR USE AT WNTD			
Prepared by:	Dioscoro Ejercito Graham Cooke Sam Austman	Date:	93.04.23
Revised by:	Sam Austman	Date:	93.09.15
Verified by:	Level 4 Programme	_ Date:	94.02.01
Approved by:	Coordinator Training Officer	_ Date:	94.02.01

Nuclear Generating Unit Schematic CANDU Pressurized Heavy Water Reactor

PREFACE

This course will prepare you to use and understand the terminology and concepts of the CANDU Power Station. The course invites new staff to support Hydro's primary goal of providing abundant, competitively priced, safe and clean electrical and heat energy to Ontario's people and industries.

After the course, you will be able to convey the following ideas to your colleagues, families and friends:

- CANDU Reactors are a Canadian invention, with construction and operation of commercial reactors pioneered by Ontario Hydro early on in the history of worldwide nuclear power generation.
- Ontario Hydro is the major user of CANDU technology, deriving over half the province's power from these systems. CANDUs are also operating in Quebec and New Brunswick, and have been purchased by five other countries.
- The CANDU design, using heavy water for cooling and moderation, differs significantly from reactors such as those used in the USA and most other nations.
- The CANDU design is *more* expensive to build and refurbish but provides safer and *less* expensive operation because it uses natural Uranium and has on-power refueling capability.
- The use of a heavy water moderator to sustain a nuclear reaction makes the precise geometry of the reactor vital to continuing the reaction. Any serious damage to the reactor core stops the nuclear reaction.
- Ontario Hydro's Nuclear Operations Branch (NOB) has developed an organizational structure intent on supporting an Operating Philosophy based on staff and public safety as well as reliable and economic power generation.

In summary, CANDU remains a valid, modern technology, based on its inherent economy of operation, safety and reliability.

REVISION SUMMARY

R1 93.09.15

- table of contents added
- · course pages renumbered sequentially
- minor changes/additions throughout to clarify/correct text and correction of typos in response to comments received from EAST class in June 1993, from ENTD, and from WNTD instructor
- major rewrite of Module 1 section E to reflect reorganisation of Nuclear during summer of 1993

TABLE OF CONTENTS

PREFACE	III
REVISION SUMMARY	IV
TABLE OF CONTENTS	v
INTRODUCTION	XI
BRIEF HISTORY OF CANDU	XI
ADMINISTRATION	XI
COURSE OBJECTIVE	XI
AUDIENCE	XII
PROGRAMME STANDARD	ХП
COURSE STRUCTURE	XII
LOOKING FORWARD	XIV
OPERATING PHILOSOPHY	
INTRODUCTION	1
A. EMPLOYEE AND PUBLIC SAFETY	3
MAJOR HAZARDS ASSOCIATED WITH OUR NUCLEAR FACILITIES	4
RADIATION	4
HYDROGEN SULPHIDE	7
ALARA - OUR PHILOSOPHY TOWARDS HAZARDS	7
A SAFE WORKING ENVIRONMENT	7
SAFETY STANDARDS	8
ASSIGNMENT	9
B. REACTOR SAFETY	
BASIC RELIABILITY CONCEPTS	
DEFINITIONS	
CONCEPTS	
ASSIGNMENT	
DEFENCE IN DEPTH	
EFFECTIVENESS OF DEFENCE IN DEPTH	
ASSIGNMENT	
DOCUMENTATION	
ASSIGNMENT	24

C. ENVIR	ONMENTAL LIMITS	25
NUCLEA	R STATION RADIOACTIVE EMISSIONS	26
EMISSIO	NS FROM THE BRUCE HEAVY WATER PLANT	27
ASSIGNM	MENT	27
D. ECONO	OMICS OF CANDU	28
	INIT ENERGY COST	
	ÆNT :	
	VE CONDUCT OUR BUSINESS	
	SATION	
	E OF LICENCED POSITIONS WITHIN THE NUCLEAR STATION	
	FAMILIES THAT MAKE UP THE STATION STAFF	
	NG AND THE DEFICIENCY REPORT PROCESS	
	AND SELF-CHECKING	
ASSIGNN	ÆNT	44
REFERENC	CES	46
·		
THE REACTOR	SIDE OF THE STATION	47
INTRODU	CTION	47
	•	
	CIPLE OF REACTOR OPERATION	
	STRUCTURE	
•	IN REACTION	
	TCALITY AND NEUTRON MULTIPLICATION	
	ACTOR CORE	
	DERATOR	
	E GEOMETRY	
ASSIGNN	MENT	57
B. MAJO	R COMPONENTS OF CANDU REACTORS	58
KEY CAN	NDU COMPONENTS	59
THE REA	CTOR CORE STRUCTURE	60
SHIE	LDING	63
ONP	OWER FUELLING	63
THE MOI	DERATOR SYSTEMS	64
THE	MAIN MODERATOR SYSTEM	64
MOD	DERATOR AUXILIARIES	65
MOD	DERATOR HEAT SOURCES	67

	THE HEAT TRANSPORT SYSTEMS	67
	THE MAIN HEAT TRANSPORT SYSTEM	67
	HEAT TRANSPORT AUXILIARIES	69
	OTHER FEATURES OF THE HTS LAYOUT	70
	MODERATOR AND HTS HEAVY WATER	71
	ASSIGNMENT	72
C.	HEAT PRODUCTION AND REACTOR REGULATION	74
	HEAT FLOW IN THE MAIN HEAT TRANSPORT SYSTEM	74
	REACTIVITY MECHANISMS	76
	FINE REACTIVITY REGULATION	76
	COARSE REACTIVITY CONTROL	78
	MANUAL AND AUTOMATIC REACTIVITY ADJUSTMENTS	79
	ASSIGNMENT	80
D.	REACTOR, PERSONNEL AND PUBLIC PROTECTION	82
	HAZARDS	82
	NITROGEN-16 AND OXYGEN-19	82
	TRITIUM	83
	OTHER HAZARDS	84
•	SAFETY SYSTEMS	84
	SHUTDOWN SYSTEMS	84
	EMERGENCY COOLANT INJECTION (ECI)	87
	CONTAINMENT	89
	TWO-OUT-OF-THREE TRIP SYSTEM	91
	ASSIGNMENT	93
тне со	NVENTIONAL SIDE OF THE STATION	95
IN	TRODUCTION	95
A .	STEAM AND FEEDWATER CYCLE	96
	THE BOILER (STEAM GENERATOR)	97
	THE STEAM/FEDWATER CYCLE	100
	THE STEAM SYSTEM	100
	BOILER FEEDWATER SYSTEM	108
	LOW PRESSURE FEEDHEATING SYSTEM	110
	THE DEAERATOR AND STORAGE TANK	110
	HIGH PRESSURE FEEDHEATING SYSTEM	111
	LUBRICATION SYSTEM	112
	THE TURNING GEAR	112
	CHEMICAL CONTROL	112

		ASSIGNMENT	113
1	В.	THE GENERATOR	116
		AC GENERATOR ENERGY CONVERSION	_116
		GENERATOR COOLING	117
		ASSIGNMENT	118
(C.	CONVENTIONAL AND RADIOLOGICAL HAZARDS	119
		CHEMICAL ENERGY	119
		THERMAL ENERGY	119
		ELECTRICAL ENERGY	119
		MECHANICAL ENERGY	. 120
		NOISE ENERGY	120
		PRESSURIZED FLUID ENERGY	120
		RADIATION ENERGY	120
		ASSIGNMENT	121
ENER	G١	BALANCE AND UNIT CONTROL	123
	IN	TRODUCTION	123
	A.	EFFICIENCY AND ENERGY CONVERSION	124
		ENERGY CONVERSIONS IN A CANDU STATION	124
		EFFICIENCY OF NUCLEAR GENERATION	125
		ASSIGNMENT	127
;	В.	ENERGY BALANCE	128
		MEASURED PARAMETERS	128
		BOILER PRESSURE CONTROL (BPC)	129
		UNIT MODE OF OPERATION	131
		REACTOR LAGGING MODE	131
		REACTOR LEADING MODE	131
		IMPORTANT PROGRAMS	131
		REACTOR REGULATING SYSTEM (RRS)/ REACTOR POWER CONTROL	133
		BOILER PRESSURE CONTROL (BPC)	133
		UNIT POWER REGULATION (UPR)/ TURBINE LOAD CONTROL	133
		BOILER LEVEL CONTROL (BLC)	133
		HEAT TRANSPORT SYSTEM PRESSURE AND INVENTORY CONTROL (HTSP)	_134
		ASSIGNMENT	134
	C.	UNIT OPERATIONAL CONTROL	136
		OPERATOR/COMPUTER INTERFACE	137
		ASSIGNMENT	138

SUPPORT SYSTEMS	139
INTRODUCTION	139
A. ELECTRICAL SYSTEMS	140
MAJOR COMPONENTS	140
CLASSES OF POWER	142
CLASS IV POWER	143
CLASS III POWER	143
CLASS II POWER	143
CLASS I POWER	143
EMERGENCY POWER SYSTEM (EPS)	144
ASSIGNMENT	145
B. WATER AND AIR SYSTEMS	147
LIGHT WATER SYSTEMS	147
WATER TREATMENT	148
CONDENSER COOLING WATER	149
COMMON SERVICE WATER	149
LOW PRESSURE SERVICE WATER SYSTEM	149
HIGH PRESSURE RECIRCULATING SERVICE WATER SYSTEM	149
EMERGENCY WATER SYSTEM	150
OTHER WATER SYSTEMS	150
AIR SYSTEMS	150
INSTRUMENT AIR	150
SERVICE AIR	151
BREATHING AIR	
ASSIGNMENT	151
C. IDENTIFICATION SYSTEM	153
EQUIPMENT IDENTIFICATION	153
FIELD IDENTIFICATION	155
PIPING	155
FLOWSHEETS	155
ASSIGNMENTS	156
D. SITE SUPPORT SYSTEMS	157
BULK ELECTRICAL SYSTEM	157
CENTRALIZED MAINTENANCE SERVICES	158
BRUCE BULK STEAM SYSTEM	159
ASSIGNMENT	159

E.	WASTE MANAGEMENT	160
	LIQUID WASTE MANAGEMENT	160
	INACTIVE DRAINAGE	161
	ACTIVE DRAINAGE	161
	SOLID WASTE MANAGEMENT	162
	IRRADIATED FUEL STORAGE	162
	WASTE VOLUME REDUCTION AND STORAGE	162
	ASSIGNMENT	163
F.	HEAVY WATER PRODUCTION AND MANAGEMENT	164
	HEAVY WATER PRODUCTION	164
	ENRICHING	164
	FINISHING	166
	HEAVY WATER MANAGEMENT	166
	LOSS RECOVERY	167
	UPGRADING	168
	TRITTUM REMOVAL	168
	ASSIGNMENT	170
APPEND	PIX	173
CO	OMPARISON OF COMMERCIAL NUCLEAR REACTOR TYPES	173

INTRODUCTION

BRIEF HISTORY OF CANDU

The CANadian Deuterium Uranium (CANDU) reactor, a product of Atomic Energy of Canada Limited (AECL), is a Canadian invention that evolved from war-time experimentation at the Chalk River Nuclear Laboratories northwest of Ottawa. Commercial construction and operation of CANDU reactors was pioneered by Ontario Hydro in the early 1960s. The CANDU design, using heavy water for cooling and moderation, differs significantly from reactors used in the United States and many other countries. It is more expensive to build, but its use of natural uranium and on-power fuelling make it less expensive to operate. Its heavy water moderator and reactor core geometry also make it inherently fail-safe.

CANDU reactors have been purchased by a number of utilities apart from Ontario Hydro. CANDU reactors are currently operating in Quebec, New Brunswick, India, Pakistan, Argentina and Korea, and several reactors are under construction in Romania. The Indian programme has been the most extensive, starting with an early partnership with AECL and later Ontario Hydro that led to the commissioning of a CANDU reactor in 1972, and culminating in recent years with an independent CANDU programme of significant proportions.

CANDU is one of many reactor designs in use throughout the world. The predominant design in use in the United States and many other countries is the pressurized light water reactor. Other designs include boiling water reactors and graphite moderated reactors (gas cooled designs in Britain, water cooled in the former Soviet Union). More information on reactor designs is provided in an Appendix to this course.

ADMINISTRATION

COURSE OBJECTIVE

This is intended to be the first course in the initial technical training programme for new hires. The overall objective of the course is:

to familiarise new employees with the basic terminology and concepts associated with the Nuclear Business with the intent of fostering better understanding and more effective communication within and between work groups.

This is achieved by introducing the function, operation and interactions of the CANDU station and processes associated with CANDU. At the same time this course will also introduce you to:

the technology of CANDU and the importance of economical, reliable operation;

the general process hazards and conditions;

the importance of various CANDU safety concepts and environmental concerns.

The course will enable you to represent CANDU technology knowledgeably to the public.

AUDIENCE

This course is intended for new employees in the following major job families within the Nuclear Business:

Operators,
Mechanical Maintainers,
Control Technicians,
Chemical Technicians,
Civil Maintainers,
Management and Professional Technical Staff.

It is also suitable for anyone requiring a basic introduction to CANDU. To have the maximum effect, the course should be delivered to trainees soon after they have been hired. Staff who have been working at a Nuclear Station for more than one year will gain little from this course.

PROGRAMME STANDARD

The **overall objective** for the course is provided above. In addition, each module of the course is introduced by a **module objective**. These

objectives serve to highlight the general intent of each level of the course. The module objectives are in turn supported by enabling objectives which focus on the material to be learned in each section. The checkout is based entirely on the enabling objectives. Often the course text will delve deeper into a topic than is required to meet these objectives. This is intended to provide background and context, but remember you will only be tested on the enabling objectives.

In this and subsequent courses, you are required to achieve a mark of at least 80% on the course checkout.

COURSE STRUCTURE

The course begins with an introduction to the operating philosophy of the Nuclear Business, followed by an examination of the reactor and turbine sides of the CANDU station. The two sides are tied together by a short module on overall unit control. A final module addresses both those systems with a major support role within the station, and other important systems and processes outside the stations (such as heavy water production). Course delivery is spread over a period of seven days including time for structured review and a checkout on the last afternoon.

Each of the modules in the course has been laid out in a common format with a common way of highlighting information to make it easier for you to absorb. Each module begins with a brief introduction that includes the module objective (see above). The module objective lists a number of key points that will be covered. These are lettered A, B, C, etc. and these letters conform to the major sections of the module. Each major section begins with a list of enabling objectives (see above). The text that follows will cover off the objectives in order, but there is no explicit tie back to the enabling objective. A number of subtitles are used within each section to break the material down further in a logical fashion. The MAJOR SUBTITLE is in bold capitals and underlined. The NEXT LEVEL OF SUBTITLE is in bold capitals. Being aware of this convention will help you to understand the structure of the material. Other conventions to be aware of are the use of:

- bullets (• a key point) to highlight lists of key points of information;
- **bold** type to highlight the first occurence of a **significant new term**, or a particularly **important piece of information**;
- footnotes to provide related information that does not fit in the flow of the text and is not required to satisfy an enabling objective.

Assignment questions are generally provided at the end of a major section of a module. These are not marked. They are provided to help you check your understanding of the information required to satisfy the enabling

objectives. Please take the time to answer the assignment questions as you work through the material. It will pay off in preparing you for the final checkout.

LOOKING FORWARD

Upon completion of this course, further technical courses will be provided in the areas of science fundamentals and equipment principles specifically related to the job functions of the trainee. In addition to the technical courses, all trainees will receive training in the following subjects:

- general safety;
- fire protection;
- emergency first aid;
- initial radiation protection;
- information management.

For M&P staff, these courses may be delayed by a work experience assignment at a nuclear facility of up to 10 months.